摘要:
A method for inspecting overlay shift defect during semiconductor manufacturing is disclosed herein and includes a step for providing a charged particle microscopic image of a sample, a step for identifying an inspection pattern measure in the charged particle microscopic image, a step for averaging the charged particle microscopic image by using the inspection pattern measure to form an averaged inspection pattern measure, a step for estimating an average width from the averaged inspection pattern measure, and a step for comparing the average width with a predefined threshold value to determine the presence of the overlay shift defect.
摘要:
A method for measuring critical dimension (CD) includes steps of: scanning at least one area of interest of a die to obtain at least one scanned image; aligning the scanned image to at least one designed layout pattern to identify a plurality of borders within the scanned image; and averaging distances each measured from the border or the plurality of borders of a pattern associated with a specific type of CD corresponding to the designed layout pattern to obtain a value of CD of the die. The value of critical dimensions of dies can be obtained from the scanned image with lower resolution which is obtained by relatively higher scanning speed, so the above-mentioned method can obtain value of CD for every die within entire wafer to monitor the uniformity of the semiconductor manufacturing process within an acceptable inspection time.
摘要:
A method of inspecting for overlay shift defects during semiconductor manufacturing is disclosed. The method can include the steps of providing a charged particle microscopic image of a sample, identifying an inspection pattern period in the charged particle microscopic image, averaging the charged particle microscopic image by using the inspection pattern period to form an averaged inspection pattern period, estimating an average width from the averaged inspection pattern period, and comparing the average width with a predefined threshold value to determine the presence of an overlay shift defect.
摘要:
A method of inspecting for overlay shift defects during semiconductor manufacturing is disclosed. The method can include the steps of providing a charged particle microscopic image of a sample, identifying an inspection pattern period in the charged particle microscopic image, averaging the charged particle microscopic image by using the inspection pattern period to form an averaged inspection pattern period, estimating an average width from the averaged inspection pattern period, and comparing the average width with a predefined threshold value to determine the presence of an overlay shift defect.
摘要:
A method for determining abnormal characteristics in integrated circuit manufacturing process is disclosed. The method comprises obtaining a charged particle microscope image of a sample test structure, wherein the sample including a reference pattern and a test pattern; measuring gray levels of the reference pattern and the test pattern; calculating a standard deviation from a distribution of the gray levels of the reference pattern measured; and determining the abnormal characteristics of the test pattern based on the gray levels measured and the standard deviation.
摘要:
A method of classifying the defects on a wafer having some same chips and corresponding system is provided. After receiving images formed by scanning the wafer using a charged particle beam, these images are examined such that both defective images and defect-free images are found. Then, the defect-free images are translated into a simulated layout of the chip, or a database is used to provide the simulated layout of the chip. Finally, the defects on the defective images are classified by comparing the images with the simulated layout of the chip. The system has some modules separately corresponds to the steps of the method.
摘要:
A method for examining a sample with a scanning charged particle beam imaging apparatus. First, an image area and a scan area are specified on a surface of the sample. Herein, the image area is entirely overlapped within the scan area. Next, the scan area is scanned by using a charged particle beam along a direction neither parallel nor perpendicular to an orientation of the scan area. It is possible that only a portion of the scan area overlapped with the image area is exposed to the charged particle beam. It also is possible that both the shape and the size of the image area are essentially similar with that of the scan area, such that the size of the area projected by the charged particle beam is almost equal to the size of the image area.
摘要:
A plurality of points with identical geometric feature is compared with their SEM characteristic features to inspect defect in a localized image. Original design information is included in the geometric feature such that absolute compare can be performed in this inspection method. Further, this method can also be applied to the localized image with or without repeated or redundant pattern.
摘要:
An apparatus comprises an imaging unit to image a wafer to be reviewed, wherein imaging unit is the modified SORIL column. The modified SORIL column includes a focusing sub-system to do micro-focusing due to a wafer surface topology, wherein the focusing sub-system verifies the position of a grating image reflecting from the wafer surface to adjust the focus; and a surface charge control to regulate the charge accumulation due to electron irradiation during the review process, wherein the gaseous molecules are injected under a flood gun beam rather than under a primary beam. The modified SORIL column further includes a storage unit for storing wafer design database; and a host computer to manage defect locating, defect sampling, and defect classifying, wherein the host computer and storage unit are linked by high speed network.
摘要:
A method and system for inspecting defects saves scanned raw data as an original image so as to save time for repeated scanning and achieve faster defect inspection and lower false rate by reviewing suspicious defects and other regions of interest in the original image by using the same or different image-processing algorithm with the same or different parameters.