摘要:
The method involves providing a semiconductor substrate comprising first and second regions in which different conductive metal-oxide semiconductor (MOS) transistors are to be formed. A gate dielectric layer above the semiconductor substrate sequentially forming a first metallic conductive layer and a second metallic conductive layer on and above the gate dielectric layer; covering the second region with a mask, and performing ion plantation of a first material into the first metallic conductive layer of the first region. Removing the second metallic conductive layer of the first region and forming a first gate electrode of the first region and a second gate electrode of the second region by patterning the gate dielectric layer and the first metallic conductive layer of the first region, and the gate dielectric layer, the first metallic conductive layer, and the second metallic conductive layer of the second region. The first and second regions of the semiconductor substrate having different work functions because the gate electrodes of the first and second regions have different thicknesses and at least one of the first and second gate electrodes include impurities.
摘要:
The method involves providing a semiconductor substrate comprising first and second regions in which different conductive metal-oxide semiconductor (MOS) transistors are to be formed. A gate dielectric layer above the semiconductor substrate sequentially forming a first metallic conductive layer and a second metallic conductive layer on and above the gate dielectric layer; covering the second region with a mask, and performing ion plantation of a first material into the first metallic conductive layer of the first region. Removing the second metallic conductive layer of the first region and forming a first gate electrode of the first region and a second gate electrode of the second region by patterning the gate dielectric layer and the first metallic conductive layer of the first region, and the gate dielectric layer, the first metallic conductive layer, and the second metallic conductive layer of the second region. The first and second regions of the semiconductor substrate having different work functions because the gate electrodes of the first and second regions have different thicknesses and at least one of the first and second gate electrodes include impurities.
摘要:
A method of fabricating a semiconductor device having a dual gate allows for the gates to have a wide variety of threshold voltages. The method includes forming a gate insulation layer, a first capping layer, and a barrier layer in the foregoing sequence across a first region and a second region on a substrate, exposing the gate insulation layer on the first region by removing the first capping layer and the barrier layer from the first region, forming a second capping layer on the gate insulation layer in the first region and on the barrier layer in the second region, and thermally processing the substrate on which the second capping layer is formed. The thermal processing causes material of the second capping layer to spread into the gate insulation layer in the first region and material of the first capping layer to spread into the gate insulation layer in the second region. Thus, devices having different threshold voltages can be formed in the first and second regions.
摘要:
A semiconductor device that has a dual gate having different work functions is simply formed by using a selective nitridation. A gate insulating layer is formed on a semiconductor substrate including a first region and a second region, on which devices having different threshold voltages are to be formed. A diffusion inhibiting material is selectively injected into the gate insulating layer in one of the first region and the second region. A diffusion layer is formed on the gate insulating layer. A work function controlling material is directly diffused from the diffusion layer to the gate insulating layer using a heat treatment, wherein the gate insulting layer is self-aligned capped with the selectively injected diffusion inhibiting material so that the work function controlling material is diffused into the other of the first region and the second region. The gate insulating layer is entirely exposed by removing the diffusion layer. A gate electrode layer is formed on the exposed gate insulating layer. A first gate and a second gate having different work functions are respectively formed in the first region and the second region by etching the gate electrode layer and the gate insulating layer.
摘要:
A method of fabricating a semiconductor device having a dual gate allows for the gates to have a wide variety of threshold voltages. The method includes forming a gate insulation layer, a first capping layer, and a barrier layer in the foregoing sequence across a first region and a second region on a substrate, exposing the gate insulation layer on the first region by removing the first capping layer and the barrier layer from the first region, forming a second capping layer on the gate insulation layer in the first region and on the barrier layer in the second region, and thermally processing the substrate on which the second capping layer is formed. The thermal processing causes material of the second capping layer to spread into the gate insulation layer in the first region and material of the first capping layer to spread into the gate insulation layer in the second region. Thus, devices having different threshold voltages can be formed in the first and second regions.
摘要:
A method of fabricating a semiconductor device having a dual gate allows for the gates to have a wide variety of threshold voltages. The method includes forming a gate insulation layer, a first capping layer, and a barrier layer in the foregoing sequence across a first region and a second region on a substrate, exposing the gate insulation layer on the first region by removing the first capping layer and the barrier layer from the first region, forming a second capping layer on the gate insulation layer in the first region and on the barrier layer in the second region, and thermally processing the substrate on which the second capping layer is formed. The thermal processing causes material of the second capping layer to spread into the gate insulation layer in the first region and material of the first capping layer to spread into the gate insulation layer in the second region. Thus, devices having different threshold voltages can be formed in the first and second regions.
摘要:
A semiconductor device that has a dual gate having different work functions is simply formed by using a selective nitridation. A gate insulating layer is formed on a semiconductor substrate including a first region and a second region, on which devices having different threshold voltages are to be formed. A diffusion inhibiting material is selectively injected into the gate insulating layer in one of the first region and the second region. A diffusion layer is formed on the gate insulating layer. A work function controlling material is directly diffused from the diffusion layer to the gate insulating layer using a heat treatment, wherein the gate insulting layer is self-aligned capped with the selectively injected diffusion inhibiting material so that the work function controlling material is diffused into the other of the first region and the second region. The gate insulating layer is entirely exposed by removing the diffusion layer. A gate electrode layer is formed on the exposed gate insulating layer. A first gate and a second gate having different work functions are respectively formed in the first region and the second region by etching the gate electrode layer and the gate insulating layer
摘要:
A method of fabricating a semiconductor device having a dual gate allows for the gates to have a wide variety of threshold voltages. The method includes forming a gate insulation layer, a first capping layer, and a barrier layer in the foregoing sequence across a first region and a second region on a substrate, exposing the gate insulation layer on the first region by removing the first capping layer and the barrier layer from the first region, forming a second capping layer on the gate insulation layer in the first region and on the barrier layer in the second region, and thermally processing the substrate on which the second capping layer is formed. The thermal processing causes material of the second capping layer to spread into the gate insulation layer in the first region and material of the first capping layer to spread into the gate insulation layer in the second region. Thus, devices having different threshold voltages can be formed in the first and second regions.
摘要:
A complementary metal oxide semiconductor (CMOS) device including: a semiconductor substrate including a NMOS region and a PMOS region; a NMOS metal gate stack structure on the NMOS region and including a first high dielectric layer, a first barrier metal gate on the first high dielectric layer and including a metal oxide nitride layer, and a first metal gate on the first barrier metal gate; and a PMOS metal gate stack structure on the PMOS region and including a second high dielectric layer, a second barrier metal gate on the second high dielectric layer and including a metal oxide nitride layer, and a second metal gate on the second barrier metal gate.
摘要:
A method includes providing a plurality of active regions on a substrate, and at least a first device isolation layer between two of the plurality of active regions, wherein the plurality of active regions extend in a first direction; providing a gate layer extending in a second direction, the gate layer forming a plurality of gate lines including a first gate line and a second gate line extending in a straight line with respect to each other and having a space therebetween, each of the first gate line and second gate line crossing at least one of the active regions, providing an insulation layer covering the first device isolation layer and covering the active region around each of the first and second gate lines; and providing an inter-gate insulation region in the space between the first gate line and the second gate line.