摘要:
A plasma chamber having a magnet which produces a magnetic field such that, within a region parallel to and adjacent to the workpiece, the direction of the magnetic field is approximately the vector cross product of (i) the gradient of the magnitude of the magnetic field, and (ii) a vector extending perpendicularly from the workpiece surface toward the plasma. Alternatively, the plasma chamber includes a north magnetic pole and a south magnetic pole located at distinct azimuths around the periphery of the workpiece. The azimuth of the south magnetic pole relative to the north magnetic pole is clockwise around the central axis, and each magnetic pole faces a direction which is more toward than away from a central axis of the workpiece area. An additional aspect of the invention is a plasma chamber having a rotating magnetic field produced by electromagnets spaced around the periphery of the workpiece which receive successive fixed amounts of electrical current during successive time intervals. During each transition between the time intervals, the current supplied to each electromagnet is changed relatively slowly or relatively quickly according to whether the current change includes a change in polarity.
摘要:
The present invention is embodied in a plasma reactor for processing a workpiece such as a semiconductor wafer having an axis of symmetry, the reactor including a reactor chamber with a ceiling, a pedestal for supporting the workpiece within the chamber under the ceiling, a processing gas supply inlet into the chamber, an RF plasma power source coupled to the pedestal, and a magnetic field source near the ceiling providing a radially symmetrical magnetic field relative to the axis of symmetry within a portion of the chamber near the ceiling. The magnetic field source can include an electromagnet or plural magnets disposed over the ceiling in a radially symmetrical fashion with respect to the axis of symmetry. The plural magnets may be permanent magnets or electromagnets. The radially symmetrical magnetic field penetrates from the ceiling into the chamber to a shallow depth, and the height of the ceiling above the workpiece exceeds the depth.
摘要:
A method of etching a dielectric layer (20) on a substrate (25) with high etching selectivity, low etch rate microloading, and high etch rates is described. In the method, a substrate (25) having a dielectric layer (20) with resist material thereon, is placed in a process zone (55), and a process gas is introduced into the process zone (55). The process gas comprises (i) fluorohydrocarbon gas for forming fluorine-containing etchant species capable of etching the dielectric layer (20), (ii) NH.sub.3 -generating gas having a liquefaction temperature L.sub.T in a range of temperatures .DELTA.T of from about -60.degree. C. to about 20.degree. C., and (iii) carbon-oxygen gas. The temperature of substrate (25) is maintained within about .+-.50.degree. C. of the liquefaction temperature L.sub.T of the NH.sub.3 -generating gas. A plasma is formed from the process gas to etch the dielectric layer (20) on the substrate (25). Preferably, the volumetric flow ratio of fluorohydrocarbon:NH.sub.3 -generating gas is from about 2.5:1 to about 7:1.
摘要:
The invention contours the chamber surface overlying semiconductor wafer being processed (i.e., the chamber ceiling) in such a way as to promote or optimize the diffusion of plasma ions from their regions of origin to other regions which would otherwise have a relative paucity of plasma ions. This is accomplished by providing a greater chamber volume over those areas of the wafer otherwise experiencing a shortage of plasma ions and a smaller chamber volume over those areas of the wafer experiencing a plentitude of plasma ions (e.g, due to localized plasma generation occurring over the latter areas). Thus, the ceiling is contoured to promote a plasma ion diffusion which best compensates for localized or non-uniform patterns in plasma ion generation typical of an inductively coupled source (e.g., an overhead inductive antenna). Specifically, the invention provides a lesser ceiling height (relative to the wafer surface) over regions in which plasma ions are generated or tend to congregate and a greater ceiling height in other regions. More specifically, in the case of an overlying inductive antenna where plasma ion density tends to fall off toward the wafer periphery, the ceiling contour is such that the ceiling height increases radially, i.e., toward the wafer periphery. This promotes or increases plasma ion diffusion toward the wafer periphery as a function of the rate at which the ceiling height increases radially.
摘要:
An oxide etching recipe including a heavy hydrogen-free fluorocarbon having F/C ratios less than 2, preferably C4F6, an oxygen-containing gas such as O2 or CO, a lighter fluorocarbon or hydrofluorocarbon, and a noble diluent gas such as Ar or Xe. The amounts of the first three gases are chosen such that the ratio (F—H)/(C—O) is at least 1.5 and no more than 2. Alternatively, the gas mixture may include the heavy fluorocarbon, carbon tetrafluoride, and the diluent with the ratio of the first two chosen such the ratio F/C is between 1.5 and 2.
摘要:
An oxide etching recipe including a heavy hydrogen-free fluorocarbon having F/C ratios less than 2 such as C4F6 or C5F8, an oxygen-containing gas such as O2, CO or CO2, a lighter fluorocarbon or hydrofluorocarbon, and a noble diluent gas such as Ar or Xe. The amounts of the first three gases are chosen such that the ratio (F—H)/(C—O) is at least 1.5 and no more than 2. Alternatively, the gas mixture may include the heavy fluorocarbon, carbon tetrafluoride, and the diluent with the ratio of the first two chosen such the ratio F/C is between 1.5 and 2.
摘要翻译:氧化物蚀刻配方包括F / C比小于2的重氢无碳氟化合物,例如C 4 F 6或C 5 F 8,含氧气体如O 2,CO或CO 2,较轻碳氟化合物或氢氟烃,以及稀有稀释气体 作为Ar或Xe。 选择前三种气体的量,使得比值(FH)/(CO)至少为1.5且不大于2.或者,气体混合物可以包括重碳氟化合物,四氟化碳和稀释剂,其比例 的前两个被选择的比例F / C在1.5和2之间。