摘要:
A process chamber 35 for processing a substrate 30 and monitoring the process conducted on the substrate 30, comprises a support 45, a gas distributor, and an exhaust 85. The process chamber 35 has a wall which may comprise a window or radiation transmitting portion 130 that allows light to be transmitted therethrough. Residue deposits onto the window 130 during processing of the substrate 30 may be reduced. In one version, the window 130 comprises a transparent plate 135 covered by an overlying mask 140 that has at least one aperture 145 extending through the mask 140 so that light can be transmitted through the aperture 145 and the transparent plate 135.
摘要:
The invention is embodied in a coil antenna for radiating RF power supplied by an RF source into a vacuum chamber, the coil antenna including plural helical conductors each having a first end and a second end, the first ends being adapted for connection to a first common RF potential, the second ends being adapted for connection to a second common RF potential, each of the plural conductors being wound about a common axis of helical symmetry, each of the second ends being spaced substantially equally from the axis and from each other.
摘要:
The invention is embodied in a coil antenna for radiating RF power supplied by an RF source into a vacuum chamber of an inductively coupled plasma reactor which processes a semiconductor wafer in the vacuum chamber, the reactor having a gas supply inlet for supplying processing gases into the vacuum chamber, the coil antenna including plural concentric spiral conductive windings, each of the windings having an interior end near an apex of a spiral of the winding and an outer end at a periphery of the spiral of the winding, and a common terminal connected to the interior ends of the plural concentric spiral windings, the RF power source being connected across the terminal and the outer end of each one of the windings.
摘要:
A plasma chamber having a magnet which produces a magnetic field such that, within a region parallel to and adjacent to the workpiece, the direction of the magnetic field is approximately the vector cross product of (i) the gradient of the magnitude of the magnetic field, and (ii) a vector extending perpendicularly from the workpiece surface toward the plasma. Alternatively, the plasma chamber includes a north magnetic pole and a south magnetic pole located at distinct azimuths around the periphery of the workpiece. The azimuth of the south magnetic pole relative to the north magnetic pole is clockwise around the central axis, and each magnetic pole faces a direction which is more toward than away from a central axis of the workpiece area. An additional aspect of the invention is a plasma chamber having a rotating magnetic field produced by electromagnets spaced around the periphery of the workpiece which receive successive fixed amounts of electrical current during successive time intervals. During each transition between the time intervals, the current supplied to each electromagnet is changed relatively slowly or relatively quickly according to whether the current change includes a change in polarity.
摘要:
A process chamber 35 for processing a substrate 30 and monitoring the process conducted on the substrate 30, comprises a support 45, a gas distributor, and an exhaust 85. The process chamber 35 has a wall comprising a window 130 that allows light to be transmitted therethrough and reduces deposition of process residue from the process gas onto the window 130 during processing of the substrate 30. In one version, the window 130 comprises a transparent plate 135 covered by an overlying mask 140 that has at least one aperture 145 extending through the mask 140 so that light can be transmitted through the aperture 145 and the transparent plate 135.
摘要:
The invention is embodied in a coil antenna for radiating RF power supplied by an RF source into a vacuum chamber of an inductively coupled plasma reactor which processes a semiconductor wafer in the vacuum chamber, the reactor having a gas supply inlet for supplying processing gases into the vacuum chamber, the coil antenna including plural concentric spiral conductive windings, each of the windings having an interior end near an apex of a spiral of the winding and an outer end at a periphery of the spiral of the winding, and a common terminal connected to the interior ends of the plural concentric spiral windings, the RF power source being connected across the terminal and the outer end of each one of the windings. In embodiment, the inner ends of the concentric spiral windings are connected radially outwardly of a common conductor rather than inwardly to an apex terminal. In another embodiment, the concentric spiral windings are each powered at a point intermediate the radially inner and outer ends. In yet another embodiment, there are plural radially separate groups of concentric spiral windings, each connected to a separately controlled RF power source to enable adjustment of radial distribution of the plasma ion density. In a further embodiment, the spiral concentric windings are not conformal with the shape of the chamber ceiling, and can extend above the ceiling.
摘要:
A magnetic field enhanced plasma etch reactor system and method of operation is disclosed. In the system and operation, modulated sinusoidal currents are generated and applied 90.degree. out of phase to opposing pairs of series connected electromagnets to produce a modified rotating magnetic field parallel to a substrate processed in the system. The modification of the rotating magnetic field, in turn, results in an improvement in the uniformity of the etch pattern over the upper surface of the substrate.
摘要:
A process for etching a substrate 25 in an etching chamber 30, and simultaneously cleaning a thin, non-homogeneous, etch residue deposited on the surfaces of the walls 45 and components of the etching chamber 30. In the etching step, process gas comprising etchant gas is used to etch a substrate 25 in the etching chamber 30 thereby depositing etch residue inside the chamber 30. Cleaning gas is added to the process gas for a sufficient time and in a volumetric flow ratio that is sufficiently high, to react with and remove substantially all the etch residue deposited by the process gas. The present method advantageously cleans the etch residue in the chamber 30, during the etching process, and without use of separate cleaning, conditioning, and seasoning process steps.
摘要:
The invention provides a system and a method for dynamic RF inductive and capacitive coupling control to improve plasma substrate processing, as well as for achieving contamination and defect reduction. A plasma reactor includes a substrate support disposed in a chamber. An RF coil is disposed adjacent the chamber for inductively coupling RF energy into the chamber. An electrode is disposed adjacent the chamber and has a voltage for capacitively coupling energy into the chamber. The electrode is spaced from the substrate support and the RF coil. An electrode adjusting member is coupled with the electrode for dynamically adjusting the voltage in the electrode to vary the capacitive coupling for improved plasma ignition and plasma stability. A Faraday shield may be placed between the RF coil and the plasma process region in the chamber to suppress capacitive coupling of the RF coil. Sensors may be provided to monitor the amounts of inductive coupling and capacitive coupling to provide feedback to a controller which is used to adjust the inductive coupling and capacitive coupling in real time to stabilize the plasma and achieve improved processing.
摘要:
An apparatus 20 and process for treating and conditioning an etching chamber 30, and cleaning a thin, non-homogeneous, etch residue on the walls 45 and components of the etching chamber 30. In the etching step, a substrate 25 is etched in the etching chamber 30 to deposit a thin etch residue layer on the surfaces of the walls and components in the chamber. In the cleaning step, cleaning gas is introduced into a remote chamber 40 adjacent to the etching chamber 30, and microwave or RF energy is applied inside the remote chamber to form an activated cleaning gas. A short burst of activated cleaning gas at a high flow rate is introduced into the etching chamber 30 to clean the etch residue on the walls 45 and components of the etching chamber. The method is particularly useful for cleaning etch residue that is chemically adhered to ceramic surfaces in the chamber, for example surfaces comprising aluminum nitride, boron carbide, boron nitride, diamond, silicon oxide, silicon carbide, silicon nitride, titanium oxide, titanium carbide, yttrium oxide, zirconium oxide, or mixtures thereof.