Abstract:
The present invention provides an optical path processing method and apparatus. The apparatus includes an FA, an LA, an aspheric lens, a filter, and a reflector, where the FA includes a test optical channel, where the test optical channel is configured to receive test light, and enable the test light to be incident through the LA and the aspheric lens to a surface of the filter; the filter is located between the aspheric lens and the reflector, and is configured to perform transmission on the test light; and the reflector is at a distance of less than or equal to a first preset value away from a focus of light transmitted through the aspheric lens, and is configured to reflect, at a preset angle, the test light transmitted through the filter to a specular surface of the reflector.
Abstract:
The present disclosure discloses a notification service processing method for business process management and a business process management engine. The method includes parsing a definition of a business process when business process starts running, and creating a business process instance for a business activity when execution reaches the business activity, where an event listener is configured for the business activity, and where at least one notification service is configured for the event listener, parsing, based on the created business process instance, the event listener configured for the business activity, and invoking the notification service configured for the event listener when the event listener learns by listening that a notification service trigger condition is met to send a notification message to a corresponding party. In this way, complexity of notification service processing in business process management is reduced.
Abstract:
The present invention provides an optical component and an optical device, and the optical component includes a two-dimensional fiber array and a compensation block, where an end face of the two-dimensional fiber array is obliquely polished as a whole; the compensation block is disposed between the two-dimensional fiber array and another optical component; any two light beams that pass through the two-dimensional fiber array and are emitted from the obliquely polished end face of the two-dimensional fiber array are incident to an end face of the compensation block in parallel, and are incident to an end face of the another optical component in parallel after being refracted by another end face of the compensation block.
Abstract:
The present invention provides an optical component and an optical device, and the optical component includes a two-dimensional fiber array and a compensation block, where an end face of the two-dimensional fiber array is obliquely polished as a whole; the compensation block is disposed between the two-dimensional fiber array and another optical component; any two light beams that pass through the two-dimensional fiber array and are emitted from the obliquely polished end face of the two-dimensional fiber array are incident to an end face of the compensation block in parallel, and are incident to an end face of the another optical component in parallel after being refracted by another end face of the compensation block.
Abstract:
An optical switch system and the system includes a semi-transmissive semi-reflective module is configured to intercept, in a transmission manner, test light that is the same as the signal light with respect to the propagation path and output after being modulated by the optical output control module; the imaging module is configured to acquire the test light, generate corresponding initial optical path information and sampled optical path information in sequence, and transfer the initial optical path information and the sampled optical path information to the judging module in sequence; the judging module is configured to record the initial optical path information, and compare the sampled optical path information with the initial optical path information; and the control module is configured to control the optical output control module according to a comparison result.
Abstract:
A server invocation method includes a proxy server sending a first subscription message to a second server registration center based on configuration information, where the first subscription message is used to subscribe to information about at least one invoked second server. The proxy server receives a response message sent by the second server registration center and registers the information about the at least one invoked second server with the first server registration center, so that the at least one first server invokes the at least one second server.
Abstract:
A fiber link recognition method, device, and system, to recognize different fiber links where the method includes sending, by a link recognition device, a first test optical signal, receiving a second test optical signal that is returned after the first test optical signal is sent to a connection port of a first optical node, acquiring a reflection peak of the second test optical signal on a fiber link, determining a port identifier of the connection port of the first optical node according to the reflection peak of the second test optical signal on the fiber link, and recognizing, the fiber link corresponding to the second test optical signal that is returned by the connection port of the first optical node. The method embodiment is used to recognize a fiber link.
Abstract:
The present invention provides an optical path processing method and apparatus. The apparatus includes an FA, an LA, an aspheric lens, a filter, and a reflector, where the FA includes a test optical channel, where the test optical channel is configured to receive test light, and enable the test light to be incident through the LA and the aspheric lens to a surface of the filter; the filter is located between the aspheric lens and the reflector, and is configured to perform transmission on the test light; and the reflector is at a distance of less than or equal to a first preset value away from a focus of light transmitted through the aspheric lens, and is configured to reflect, at a preset angle, the test light transmitted through the filter to a specular surface of the reflector.
Abstract:
A fiber link recognition method, device, and system, to recognize different fiber links where the method includes sending, by a link recognition device, a first test optical signal, receiving a second test optical signal that is returned after the first test optical signal is sent to a connection port of a first optical node, acquiring a reflection peak of the second test optical signal on a fiber link, determining a port identifier of the connection port of the first optical node according to the reflection peak of the second test optical signal on the fiber link, and recognizing, the fiber link corresponding to the second test optical signal that is returned by the connection port of the first optical node. The method embodiment is used to recognize a fiber link.