Abstract:
Method is provided, including: determining, by a base station, a current time period in which an end moment of a current control channel is located in a first transmission time interval (TTI), where the first TTI includes at least two time periods, and a start moment of a data channel corresponding to a control channel that ends in each of the at least two time periods is located in a different TTI; sending, by the base station to user equipment in the first TTI, control information carried on the current control channel, where the control information is configured to schedule a current data channel corresponding to the current control channel; determining, by the base station, a second TTI in which a start moment of the current data channel is located; and exchanging, by the base station, data of the current data channel with the user equipment in the second TTI.
Abstract:
The present invention provides a data receiving method and apparatus. The method includes: receiving a data signal delivered by a base station, where the data signal includes at least two encoded data block groups, and each encoded data block group includes at least one encoded data block; decoding the data signal, and acquiring decoded data blocks obtained by decoding the encoded data blocks; and separately performing CRC detection on each decoded data block, and determining, according to a CRC, obtained through detection, of each decoded data block, whether to execute an SIC operation, and if it is determined to execute an SIC operation, executing CRC detection again on the decoded data block on which an SIC operation is performed, until a same CRC result occurs or all CRCs are zero.
Abstract:
A method for selecting a transport format in an uplink multiple-input multiple-output system and a related method and a device are used by a user equipment to select a transport format in a case in which the user equipment is in a dual-stream transmission mode of the ULMIMO and inter-stream interference is considered.
Abstract:
Example measurement methods and apparatus are described. One example method includes receiving first information and second information from a network device by a terminal device. The terminal device determines a first resource based on the first information, and determines a second resource based on the second information. Further, the terminal device determines a third resource based on the first resource and the second resource, and performs measurement on the third resource. The third resource includes a part of or all resources in the first resource except a first overlapping resource, and the first overlapping resource is an overlapping resource of the first resource and the second resource.
Abstract:
A communication method and apparatus may be applied to a wireless communication system, for example, 4G or 5G. The method includes: determining a monitoring span pattern in one slot and an actual monitoring capability in each monitoring span in the pattern based on configuration information such as an SS set and a bound CORESET of a terminal device; and monitoring DCI of each cell based on the actual monitoring capability.
Abstract:
This application discloses a control information transmission method and device, and relates to the field of communications technologies, to reduce power consumption of UE. The control information transmission method provided in embodiments of this application includes: receiving, by user equipment UE, first indication information sent by a base station, where the first indication information indicates a first time window; and stopping, by the UE, monitoring a physical downlink control channel PDCCH in the first time window.
Abstract:
This application provides a method, which includes: receiving, by a terminal side device, physical layer signaling sent by a network side device in a first frequency band; and determining, by the terminal side device, a sequence number of a first time transmission unit in a second frequency band, where the first time transmission unit includes a time resource indicated by the physical layer signaling, the sequence number of the first time transmission unit is greater than or equal to a sequence number of a second time transmission unit in the second frequency band, an end time of the physical layer signaling is within a time range of the second time transmission unit, and a subcarrier spacing of the first frequency band is different from a subcarrier spacing of the second frequency band.
Abstract:
A frequency domain resource allocation method includes receiving frequency domain resource configuration information sent by a base station, where the frequency domain resource configuration information is used to indicate frequency domain resources configured for the user equipment UE, and the frequency domain resources include at least one available frequency domain resource segment and at least one unavailable frequency domain resource segment; and receiving frequency domain resource indication information sent by the base station, where the frequency domain resource indication information is used to indicate a frequency domain resource that is in the at least one available frequency domain resource segment and that is used by the UE to transmit data.
Abstract:
Method is provided, including: determining, by a base station, a current time period in which an end moment of a current control channel is located in a first transmission time interval TTI, where the first TTI includes at least two time periods, and a start moment of a data channel corresponding to a control channel that ends in each of the at least two time periods is located in a different TTI; sending, by the base station to user equipment in the first TTI, control information carried on the current control channel, where the control information is configured to schedule a current data channel corresponding to the current control channel; determining, by the base station, a second TTI in which a start moment of the current data channel is located; and exchanging, by the base station, data of the current data channel with the user equipment in the second TTI.
Abstract:
This application provide a resource indication method and a related device. According to the method provided in this application, a terminal device can send a HARQ-ACK on a PUCCH resource in at least one sub-slot. The resource indication method may be applied to the terminal device. The method may include: The terminal device may receive DCI from a network device, where the DCI indicates a slot used by the terminal device to transmit a HARQ-ACK. After receiving the DCI, the terminal device may send the HARQ-ACK on a PUCCH resource in at least one sub-slot of the slot indicated by the DCI. The slot includes at least two sub-slots. In other words, the terminal device may send the HARQ-ACK on a PUCCH resource in one sub-slot of the slot, or may send the HARQ-ACK on a PUCCH resource in a plurality of sub-slots of the slot.