摘要:
A method of making a catalyst comprising mixing a metal oxide precursor and a pore former to form a metal oxide precursor mixture and calcining the metal oxide precursor mixture in the presence of a flowing gas having a flow rate to form the catalyst comprising metal oxide. The catalyst comprises a first distribution of pores having a median pore diameter of 10 to 50 angstroms and a second distribution of pores having a median pore diameter of 1 to 500 angstroms. The median pore diameter of the second distribution of pores is inversely related to the flow rate of the gas.
摘要:
A method of making a catalyst comprising mixing a metal oxide precursor and a pore former to form a metal oxide precursor mixture and calcining the metal oxide precursor mixture in the presence of a flowing gas having a flow rate to form the catalyst comprising metal oxide. The catalyst comprises a first distribution of pores having a median pore diameter of 10 to 50 angstroms and a second distribution of pores having a median pore diameter of 1 to 500 angstroms. The median pore diameter of the second distribution of pores is inversely related to the flow rate of the gas.
摘要:
A poly(2,6-dimethyl-1,4-phenylene ether) having a high molecular weight and a reduced content of low molecular weight species can be prepared by a method that includes specific conditions for the oxidative polymerization, chelation, and isolation steps. The poly(2,6-dimethyl-1,4-phenylene ether) is particularly useful for the fabrication of fluid separation membranes.
摘要:
A method for preparing a poly(arylene ether) with a reduced level of powder fines is described. In one embodiment, the method comprises oxidatively coupling a monohydric phenol in the presence of a solvent and a complex metal catalyst, to produce a poly(arylene ether) resin; and then removing a portion of the solvent to produce a concentrated solution having a cloud point Tcloud. The concentrated solution is then combined with an anti-solvent to precipitate the poly(arylene ether) in the form of a precipitation mixture. The concentrated solution usually has a temperature of at least about (Tcloud−10° C.) immediately before it is combined with the anti-solvent. The precipitation mixture has a temperature of at least about (Tcloud−40° C.) after its formation. Related poly(arylene ether) copolymers are also described.
摘要:
An alkylation method comprises reacting a hydroxy aromatic compound with an alkyl alcohol in the presence of an alkylation catalyst comprising a metal oxide wherein the alkylation catalyst, has a surface area to volume ratio of about 950 to about 4,000 m2/m3, an aspect ratio of about 0.7 to about 1.0 or a combination of the foregoing.
摘要翻译:烷基化方法包括在包含金属氧化物的烷基化催化剂存在下使羟基芳族化合物与烷基醇反应,其中烷基化催化剂的表面积与体积比为约950至约4000m 2 / > / m 3,长宽比为约0.7至约1.0或前述的组合。
摘要:
A poly(2,6-dimethyl-1,4-phenylene ether) having a high molecular weight and a reduced content of low molecular weight species can be prepared by a method that includes specific conditions for the oxidative polymerization, chelation, and isolation steps. The poly(2,6-dimethyl-1,4-phenylene ether) is particularly useful for the fabrication of fluid separation membranes.
摘要:
A poly(2,6-dimethyl-1,4-phenylene ether) having a high molecular weight and a reduced content of low molecular weight species can be prepared by a method that includes specific conditions for the oxidative polymerization, chelation, and isolation steps. The poly(2,6-dimethyl-1,4-phenylene ether) is particularly useful for the fabrication of fluid separation membranes.
摘要:
A poly(2,6-dimethyl-1,4-phenylene ether) having a high molecular weight and a reduced content of low molecular weight species can be prepared by a method that includes specific conditions for the oxidative polymerization, chelation, and isolation steps. The poly(2,6-dimethyl-1,4-phenylene ether) is particularly useful for the fabrication of fluid separation membranes.
摘要:
A poly(2,6-dimethyl-1,4-phenylene ether) having a high molecular weight and a reduced content of low molecular weight species can be prepared by a method that includes specific conditions for the oxidative polymerization, chelation, and isolation steps. The poly(2,6-dimethyl-1,4-phenylene ether) is particularly useful for the fabrication of fluid separation membranes.