摘要:
A previously isolated hepatitis B virus (HBV) integration in a 147 bp cellular DNA fragment linked to hepatocellular carcinoma (HCC) was used as a probe to clone the corresponding complementary DNA from a human liver cDNA library. Nucleotide sequence analysis revealed that the overall structure of the cellular gene, which has been named hap, is similar to that of the DNA-binding hormone receptors. Six out of seven hepatoma and hepatoma-derived cell-lines express a 2.5 kb hap mRNA species which is undetectable in normal adult and fetal livers, but present in all non-hepatic tissues analyzed. Low stringency hybridization experiments revealed the existence of hap related genes in the human genome. The cloned DNA sequence is useful in the preparation of pure hap protein and as a probe in the detection and isolation of complementary DNA and RNA sequences. The hap protein is a retinoic acid (RA) receptor identified as RAR-β.
摘要:
A method for identifying a synthetic ligand for retinoic acid receptor β comprises providing a sample, including a synthetic compound, exposing the sample to cultured cells, wherein the cultured cells comprise RARβ, determining if transcriptional expression of a gene encoding RARβ is upregulated compared to transcriptional expression of a control gene, and choosing a sample that upregulates the expression of RARβ as being a synthetic ligand for RARβ.
摘要:
A previously isolated hepatitis B virus (HBV) integration in a 147 bp cellular DNA fragment linked to hepatocellular carcinoma (HCC) was used as a probe to clone the corresponding complementary DNA from a human liver cDNA library. Nucleotide sequence analysis revealed that the overall structure of the cellular gene, which has been named hap, is similar to that of the DNA-binding hormone receptors. Six out of seven hepatoma and hepatoma-derived cell-lines express a 2.5 kb hap mRNA species which is undetectable in normal adult and fetal livers, but present in all nonhepactic tissues analyzed. Low stringency hybridization experiments revealed the existence of hap related genes in the human genome. The cloned DNA sequence is useful in the preparation of pure hap protein and as a probe in the detection and isolation of complementary DNA and RNA sequences. The hap protein is a retinoic acid (RA) receptor identified as RAR-&bgr;.
摘要:
A previously isolated hepatitis B virus (HBV) integration in a 147 bp cellular DNA fragment linked to hepatocellular carcinoma (HCC) was used as a probe to clone the corresponding complementary DNA from a human liver cDNA library. Nucleotide sequence analysis revealed that the overall structure of the cellular gene, which has been named hap, is similar to that of the DNA-binding hormone receptors. Six out of seven hepatoma and hepatoma-derived cell-lines express a 2.5 kb hap mRNA species which is undetectable in normal adult and fetal livers, but present in all non-hepatic tissues analyzed. Low stringency hybridization experiments revealed the existence of hap related genes in the human genome. The cloned DNA sequence is useful in the preparation of pure hap protein and as a probe in the detection and isolation of complementary DNA and RNA sequences.
摘要:
A previously isolated hepatitis B virus (HBV) integration in a 147 bp cellular DNA fragment linked to hepatocellular carcinoma (HCC) was used as a probe to clone the corresponding complementary DNA from a human liver cDNA library. Nucleotide sequence analysis revealed that the overall structure of the cellular gene, which has been named hap, is similar to that of the DNA-binding hormone receptors. Six out of seven hepatoma and hepatoma-derived cell-lines express a 2.5 kb hap mRNA species which is undetectable in normal adult and fetal livers, but present in all non-hepatic tissues analyzed. Low stringency hybridization experiments revealed the existence of hap related genes in the human genome. The cloned DNA sequence is useful in the preparation of pure hap protein and as a probe in the detection and isolation of complementary DNA and RNA sequences. The hap protein is a retinoic acid (RA) receptor identified as RAR-.beta.. The RAR-.beta. gene is transcriptionally up-regulated by retinoic acid (RA) and its promoter region may contain a RARE (retinoic acid responsive element).
摘要:
A previously isolated hepatitis B virus (HBV) integration in a 147 bp cellular DNA fragment linked to hepatocellular carcinoma (HCC) was used as a probe to clone the corresponding complementary DNA from a human liver cDNA library. Nucleotide sequence analysis revealed that the overall structure of the cellular gene, which has been named hap, is similar to that of the DNA-binding hormone receptors. Six out of seven hepatoma and hepatoma-derived cell-lines express a 2.5 kb hap mRNA species which is undetectable in normal adult and fetal livers, but present in all non-hepatic tissues analyzed. Low stringency hybridization experiments revealed the existence of hap related genes in the human genome. The cloned DNA sequence is useful in the preparation of pure hap protein and as a probe in the detection and isolation of complementary DNA and RNA sequences. The hap protein is a retinoic acid (RA) receptor identified as RAR-.beta.. The RAR-.beta. gene is transcriptionally up-regulated by retinoic acid (RA) and its promoter region may contain a RARE (retinoic acid responsive element).
摘要:
A previously isolated hepatitis B virus (HBV) integration in a 147 bp cellular DNA fragment linked to hepatocellular carcinoma (HCC) was used as a probe to clone the corresponding complementary DNA from a human liver cDNA library. Nucleotide sequence analysis revealed that the overall structure of the cellular gene, which has been named hap, is similar to that of the DNA-binding hormone receptors. Six out of seven hepatoma and hepatoma-derived cell-lines express a 2.5 kb hap mRNA species which is undetectable in normal adult and fetal livers, but present in all non-hepatic tissues analyzed. Low stringency hybridization experiments revealed the existence of hap related genes in the human genome. The cloned DNA sequence is useful in the preparation of pure hap protein and as a probe in the detection and isolation of complementary DNA and RNA sequences.
摘要:
A previously isolated hepatitis B virus (HBV) integration in a 147 bp cellular DNA fragment linked to hepatocellular carcinoma (HCC) was used as a probe to clone the corresponding complementary DNA from a human liver cDNA library. Nucleotide sequence analysis revealed that the overall structure of the cellular gene, which has been named hap, is similar to that of the DNA-binding hormone receptors. Six out of seven hepatoma and hepatoma-derived cell-lines express a 2.5 kb hap mRNA species which is undetectable in normal adult and fetal livers, but present in all non-hepatic tissues analyzed. Low stringency hybridization experiments revealed the existence of hap related genes in the human genome. The cloned DNA sequence is useful in the preparation of pure hap protein and as a probe in the detection and isolation of complementary DNA and RNA sequences. The hap protein is a retinoic acid (RA) receptor identified as RAR-.beta.. The RAR-.beta. gene is transcriptionally up-regulated by retinoic acid (RA) and its promoter region may contain a RARE (retinoic acid responsive element).
摘要:
The present invention pertains to new polynucleotides or new combinations of polynucleotides useful as diagnostic tools for predicting the occurrence of a human hepatocellular carcinoma disease. The invention is also directed to polynucleotides that consist in candidate tumor suppressor genes the alteration of which is involved in the occurrence of hepatocellular carcinoma in a patient, as well as to polynucleotides derived from such new candidate tumor suppressor genes and to the corresponding expressed polypeptides. The invention also concerns diagnostic methods using said polynucleotides as diagnostic tools.
摘要:
This invention is in the field of lymphadenopathy virus. This invention relates to a diagnostic means and method of detecting lymphadenopathy associated virus or related viruses or DNA pro-viruses with cloned DNA sequences which are hybridizable to genomic RNA and DNA of lymphadenopathy associated virus. It further relates to the cloned DNA sequences and a process for their preparation.