摘要:
Magnet wires wound in slots in a lamination stack of a dynamoelectric machine are encapsulated, in whole or in part, with plastic. The plastic may be thermally conductive and have features molded therein that enhance heat transfer. The plastic may stiffen the armature and increase its critical speed. Characteristics of the plastic, its geometry and its distribution may be varied to adjust spinning inertia and resonant frequency of the armature. The magnet wires may be compressed into the slots, by application of iso-static pressure or by the pressure of the plastic being molded around them. Larger magnet wire can then be used which increases the power of the electric motor using the armature having the larger magnet wire. A two or three plate mold may be used to mold the plastic around the armature. Balancing features can be molded in place. The plastic can have a base polymer that is a blend of two or more polymers and various thermally conductive fillings.
摘要:
Magnet wires wound in slots in a lamination stack of a dynamoelectric machine are encapsulated, in whole or in part, with thermally conductive plastic. Pre-formed features having a thermal conductivity higher than the thermally conductive plastic are insert molded when the plastic is molded. The pre-formed features may include a finned end cap and a fan. Alternatively, end domes of the plastic over end coils of the wound magnet wires have a metallic layer on them, such as by being metallized. The end domes can be formed with features which are also metallized. The thermally conductive plastic can have a phase change additive in it. The magnet wires can have a layer of heat activated adhesive that is activated when the plastic is molded. Slots in the lamination stack can include slot liners formed of thermally conductive plastic. A fan can be formed when the thermally conductive plastic is molded to encapsulate the magnet wires.
摘要:
An electric motor has an armature and a stators. The armature has a lamination stack having slots therein. An internal shaft extends coaxially through the lamination stack. A plurality of magnet wires are wound in the slots of the lamination stack. A commutator is disposed on the armature shaft to which ends of the magnet wires are electrically coupled. The internal is shaft coupled to an external pinion and bearing journal by an insulated coupling. The magnet wires are at least partially encased in thermally conductive plastic. The magnet wires can have a layer of heat activated adhesive that is activated when the plastic is molded. Slots in the lamination stack can include slot liners formed of thermally conductive plastic. A fan can be formed when the thermally conductive plastic is molded to encapsulate the magnet wires. A power tool has the electric motor.
摘要:
A method for forming an armature for an electric motor includes securing a lamination stack having slots therein on an armature shaft. A commutator is secured on one end of the armature shaft. Magnet wires are wound in the slots in the lamination stack and ends of the magnet wires are secured to the commutator. Plastic is molded around the lamination stack, commutator and magnet wires. Excess plastic is machined off. The magnet wires can have a layer of heat activated adhesive that is activated when the plastic is molded. Slots in the lamination stack can include slot liners formed of thermally conductive plastic. A fan can be formed when the thermally conductive plastic is molded to encapsulate the magnet wires.
摘要:
A method of manufacturing a power tool includes forming an armature by placing an electrically insulative sleeve on an armature shaft, securing a lamination stack having slots therein on the armature shaft with the insulative sleeve disposed therebetween, securing a commutator on one end of the armature shaft with the insulative sleeve disposed therebetween, winding magnet wires in the slots in the lamination stack and securing ends of the magnet wires to the commutator, and molding thermally conductive plastic to at least partially encase the magnet wires in plastic. The armature is then disposed in a stator to form an electric motor and the electric motor is disposed in a power tool. In an aspect, electrically insulative plastic is molded in the slots of the lamination stack to form slot liners and around the ends of the lamination stack to form end spiders.In an aspect, the method includes disposing an electrically insulative seal around the insulative sleeve and abutting the commutator to seal any gap between an end of the insulative sleeve and the commutator.
摘要:
A method of making an armature includes placing a commutator and a lamination stack on an armature stack. Coil windings wound in slots in the lamination stack, the commutator and armature shaft are at least partially encapsulated in a first plastic. The commutator has a commutator ring divided into a plurality of segments with slots between the segments that are filled with a second plastic when the commutator is made by molding a core of the second plastic in the commutator ring before the commutator ring is mounted on the armature shaft. The mold used to mold the first plastic includes projections that extend between the tangs of the commutator and against notches at axial ends of the slots of the commutator. The notches filled with the second plastic and the projections of the mold prevent plastic flash from getting into the slots of the commutator ring.