摘要:
A method for operating a P-channel SONOS memory device that has a charge trapping layer located on a substrate, a gate electrode located on the trapping layer, two doped regions located in the substrate at each side of the charge trapping layer. The two doped regions are set to be a drain region and a source region. When a programming action is intended, the gate electrode and the drain region are applied with a first negative high-level bias, and the source region and the substrate are applied with a grounded voltage. When an erasing action is intended, the gate electrode is a second negative bias which is smaller than the first negative voltage in absolute value. In the mean time, the drain region is applied with the third negative bias and the substrate is applied with a grounded voltage. The third negative voltage is larger than the second negative bias in absolute value.
摘要:
A method for fabricating a non-volatile memory is described. A planar doped region is formed in the substrate at first. A mask layer and a patterned photoresist layer are sequentially formed on the substrate. A plurality of trenches is formed in the substrate with the patterned photoresist layer as a mask to divide the planar doped region into a plurality of bit-lines. The patterned photoresist layer is removed and then a recovering process is performed to recover the side-walls and the bottoms of the trenches from the damages caused by the trench etching step; The mask layer is removed. A dielectric layer is formed on the substrate and then a plurality of word-lines is formed on the dielectric layer.
摘要:
A method of fabricating a non-volatile memory, in which a charge-trapping layer consisting of insulating materials and bar-like conductive layers to be patterned into the gates are formed at first. The buried bit-lines are formed in the substrate between the bar-like conductive layers. Each of the buried bit-lines extends into the substrate under a portion of an adjacent high-K spacer, but not to the substrate under an adjacent bar-like conductive layer. High-K spacers are formed on the side-walls of the bar-like conductive layers. Then the bar-like conductive layers are patterned into the gates, and word-lines are formed on the substrate to electrically connect with the gates. The material of the high-K spacer has a dielectric constant and the high-K spacer has a width, such that a channel will extend to the substrate under the high-K spacer and connect with the buried bit-line when the non-volatile memory is operated.
摘要:
A method of fabricating a MOS transistor. First, a substrate having a gate electrode and spacers on the gate electrode sidewalls is provided. A source/drain region is formed in the substrate outside the outer edge of the spacer sidewalls. A self-aligned silicide layer is formed over the exposed surface of the gate electrode and the source/drain regions. A portion of the spacers is removed by etching to form a sharp-angled triangular spacer on the sidewalls of the gate electrode. A pocket implantation of the substrate is carried out to form a pocket region inside the substrate under the side edges of the gate electrode. By controlling the setting of the energy level and the implant angle in the pocket implantation, a precise distribution of the dopants at desired locations within the substrate is reproduced. Finally, the sharp-angled spacers are removed and then a light implantation is conducted to form source/drain extension regions in the substrate on each side of the gate electrode.
摘要:
A manufacturing method of a MOS transistor. A gate oxide layer and a polysilicon layer are successively formed on a substrate. A nitrogen ion implantation is performed to implant nitrogen ions into the contact region of the polysilicon layer with the gate dielectric layer. An annealing is performed in order to enlarge the polysilicon grains within the polysilicon layer. The polysilicon layer is patterned to form a gate. A dopant is implanted into the substrate on the sides of the gate, thereby forming a source/drain region.
摘要:
A semiconductor device with trench isolation structure is disclosed. The invention uses a trench isolation structure that can be formed by using conventional methods to prevent problems such as drain induced barrier lowering (DIBL), punch-through leakage and spiking leakage. Thus these poor electrical properties of the conventional semiconductor device with a shallow junction depth resulting from the shrink of design rules can be solved.
摘要:
A method for manufacturing a metal oxide semiconductor device is provided comprising the steps of: performing an ion implantation to form a source/drain region in the substrate having a gate formed on it and a spacer formed on the sidewalls of the gate; forming a self-aligned silicide layer on the exposed surface of the gate and the source/drain region; removing a portion of the spacer to form a substantially triangular spacer with sharp corners; performing a tilted pocket implantation to form pocket regions within the substrate beside the gate, and controlling the location of the pocket regions and the dopant distribution by adjusting the energy and angle of the tilted pocket implantation; performing a tilted-angle implantation to form a source/drain extension within the substrate beside the gate and underlying the spacer; using the thermal cycle process to adjust the junction depth and the doping profile of the source/drain extension.
摘要:
A fabrication method for a metal oxide semiconductor transistor is described. A source/drain implantation is conducted on a substrate beside the spacer that is on the sidewall of the gate to form a source/drain region in the substrate beside the spacer. A self-aligned silicide layer is further formed on the gate and the source/drain region. A portion of the spacer is removed to form a triangular spacer with a sharp corner, followed by performing a tilt angle implantation on the substrate to form a source/drain extension region in the substrate under the side of the gate and the spacer with the sharp corner. A thermal cycle is further conducted to adjust the junction depth and the dopant profile of the source/drain extension region.
摘要:
An erasing method for a p-channel nitride read only memory. The method is used for a p-channel nitride read only memory having charges stored in a charge-trapping layer. A positive voltage is applied to the control gate and a negative voltage to the drain; also, the source is floating and the n-well is grounded. The voltage difference between the positive voltage applied to the control gate and the negative voltage to the drain is sufficient to trigger a band-to-band induced hot electron injection to erase the p-channel nitride read only memory.
摘要:
A method for forming extension by using double etch spacer. The method includes at least the following steps. First a semiconductor substrate is provided. Then, the gate is formed on the substrate. A first spacer is formed on a sidewall of the gate. Then, numerous first ions are implanted in the substrate by a mask of both the gate and the first spacer to form the source/drain region. Then, the second spacer is formed by etching the first spacer, wherein the width of the second spacer is less than the width of the first spacer. Finally, numerous second ions are implanted in the substrate by a mask of both the gate and the second spacer to form an extension.