摘要:
A positive-electrode material for a lithium secondary battery. The material includes a lithium oxide compound or a complex oxide as reactive substance. The material also includes at least one type of carbon material, and optionally a binder. A first type of carbon material is provided as a coating on the reactive substance particles surface. A second type of carbon material is carbon black. And a third type of carbon material is a fibrous carbon material provided as a mixture of at least two types of fibrous carbon material different in fiber diameter and/or fiber length. Also, a method for preparing the material as well as lithium secondary batteries including the material.
摘要:
A positive-electrode material for a lithium secondary battery. The material includes a lithium oxide compound or a complex oxide as reactive substance. The material also includes at least one type of carbon material, and optionally a binder. A first type of carbon material is provided as a coating on the reactive substance particles surface. A second type of carbon material is carbon black. And a third type of carbon material is a fibrous carbon material provided as a mixture of at least two types of fibrous carbon material different in fiber diameter and/or fiber length. Also, a method for preparing the material as well as lithium secondary batteries including the material.
摘要:
A positive-electrode material for a lithium secondary battery is provided. The material includes a lithium oxide compound or a complex oxide as reactive substance. The material also includes at least one type of carbon material, and optionally a binder. A first type of carbon material is provided as a coating on the reactive substance particles surface. A second type of carbon material is carbon black. And a third type of carbon material is a fibrous carbon material provided as a mixture of at least two types of fibrous carbon material different in fiber diameter and/or fiber length. Also, a method for preparing the material as well as lithium secondary batteries including the material is provided.
摘要:
The present invention provides a lithium secondary battery for an ISS which can be discharged at not less than 20 ItA when temperature is −30 degrees centigrade and can be charged at not less than 50 ItA. The positive electrode material consists of a mixture of lithium-containing metal phosphate compound particles whose surfaces are coated with an amorphous carbon material and a conductive carbon material, in which atoms of the surface carbon materials are chemically bonded to one another. The negative electrode material contains at least one kind of particles selected from among graphite particles whose surfaces are coated with an amorphous carbon material, having a specific surface area of not less than 6 m2/g and soft carbon particles. A mixed electrolyte contains lithium hexafluorophosphate and lithium bis fluorosulfonyl imide.
摘要:
The present invention provides an electrode material, for a lithium battery, which is capable of achieving a high-energy density and a high output and continuing its properties for many years, a method of producing the electrode material, and the lithium battery. The electrode material for use in positive and negative electrodes of a lithium battery is formed as a complex by combining a carbon-based conductive material and an electrode active material with each other. The carbon-based conductive material of the electrode material is subjected to hydrophilic treatment by using a gas containing fluorine gas. The electrode material is formed as the complex by calcining a mixture of the carbon-based conductive material subjected to the hydrophilic treatment and the electrode active material in the presence of fluororesin.
摘要:
The present invention provides a lithium secondary battery for an ISS which can be discharged at not less than 20 ItA when temperature is −30 degrees centigrade and can be charged at not less than 50 ItA. The positive electrode material consists of a mixture of lithium-containing metal phosphate compound particles whose surfaces are coated with an amorphous carbon material and a conductive carbon material, in which atoms of the surface carbon materials are chemically bonded to one another. The negative electrode material contains at least one kind of particles selected from among graphite particles whose surfaces are coated with an amorphous carbon material, having a specific surface area of not less than 6 m2/g and soft carbon particles. A mixed electrolyte contains lithium hexafluorophosphate and lithium bis fluorosulfonyl imide.
摘要:
The present invention provides an electrode material, for a lithium battery, which is capable of achieving a high-energy density and a high output and continuing its properties for many years, a method of producing the electrode material, and the lithium battery. The electrode material for use in positive and negative electrodes of a lithium battery is formed as a complex by combining a carbon-based conductive material and an electrode active material with each other. The carbon-based conductive material of the electrode material is subjected to hydrophilic treatment by using a gas containing fluorine gas. The electrode material is formed as the complex by calcining a mixture of the carbon-based conductive material subjected to the hydrophilic treatment and the electrode active material in the presence of fluororesin.
摘要:
The present invention provides a method for producing a lithium secondary battery in which peeling of an active substance can be prevented and the generation of metal powder can be prevented when a power collection foil is processed at an electrode production step. The method for producing the lithium secondary battery includes an electrode-producing step of producing a positive electrode and a negative electrode; a step of forming a group of electrodes by layering the positive electrode and the negative electrode on each other through a separator, or winding the positive electrode and the negative electrode through a separator; and a step of immersing the group of the electrodes in an electrolyte. The electrode-producing step has a boring step of forming a plurality of through-holes penetrating a power collection foil and having projected parts projected from at least a rear surface of the power collection foil.