Abstract:
Example embodiments of the present invention relate to methods of manufacturing a semiconductor device. Other example embodiments of the present invention relate to methods of manufacturing a semiconductor device having a gate electrode. In the method of manufacturing the semiconductor device, a gate electrode may be formed on a semiconductor substrate. Damage in the semiconductor substrate and a sidewall of the gate electrode may be cured, or repaired, by a radical re-oxidation process to form an oxide layer on the semiconductor substrate and the gate electrode. The radical re-oxidation process may be performed by providing a nitrogen gas onto the semiconductor substrate while increasing a temperature of the semiconductor substrate to a first temperature to passivate a surface of the gate electrode under a nitrogen gas atmosphere, providing an oxygen gas onto the semiconductor substrate while increasing the temperature from a first temperature to a second temperature to perform a first oxidation process and/or performing a second oxidation process at the second temperature.
Abstract:
Example embodiments of the present invention relate to methods of manufacturing a semiconductor device. Other example embodiments of the present invention relate to methods of manufacturing a semiconductor device having a gate electrode. In the method of manufacturing the semiconductor device, a gate electrode may be formed on a semiconductor substrate. Damage in the semiconductor substrate and a sidewall of the gate electrode may be cured, or repaired, by a radical re-oxidation process to form an oxide layer on the semiconductor substrate and the gate electrode. The radical re-oxidation process may be performed by providing a nitrogen gas onto the semiconductor substrate while increasing a temperature of the semiconductor substrate to a first temperature to passivate a surface of the gate electrode under a nitrogen gas atmosphere, providing an oxygen gas onto the semiconductor substrate while increasing the temperature from a first temperature to a second temperature to perform a first oxidation process and/or performing a second oxidation process at the second temperature.
Abstract:
Example embodiments relate to a capacitor including p-type doped silicon germanium and a method of manufacturing the capacitor. The capacitor may include a lower electrode, a dielectric layer, an upper electrode, a barrier layer and a capping layer. The lower electrode may have a cylindrical shape. The dielectric layer may be on the lower electrode. The dielectric layer may have a uniform thickness. The upper electrode may be on the dielectric layer. The upper electrode may have a more uniform thickness. The capping layer may be on the upper electrode. The capping layer may include a silicon germanium layer doped with p-type impurities. The barrier layer may be between the upper electrode and the capping layer to prevent (or reduce) the p-type impurities from infiltrating into the dielectric layer.
Abstract:
The present invention relates to a method and system for preventing reverse rotation operation of an engine using a system that includes a crank angle sensor (CAS), a cam position sensor (CPS), and an engine control unit for receiving signals from the CAS and the CPS to perform engine control. The method includes determining if a piston in a specific cylinder is at a predetermined location using a level of a CPS signal at a leading edge and a trailing edge of a CAS signal; determining if the engine is rotating in reverse using the CPS signal level at the leading edge and trailing edge of the CAS signal in the case where it is determined that the piston of the specific cylinder is at the predetermined location; and discontinuing operation of the engine if it is determined that the engine is undergoing reverse rotation.
Abstract:
The disclosure relates to a system for controlling devices and information on a network by hand gestures, and more particularly, to a system for controlling devices and information on a network by hand gestures in which a device or a file to be controlled is selected by a user and a display device is pointed so that information and data can be shared and that various devices can be coupled to each other easily and can be controlled easily.The system for controlling devices and information on a network by hand gestures can remarkably improve the interaction between various input and display devices and a user under a ubiquitous computing environment.
Abstract:
The disclosure relates to a system for controlling devices and information on a network by hand gestures, and more particularly, to a system for controlling devices and information on a network by hand gestures in which a device or a file to be controlled is selected by a user and a display device is pointed so that information and data can be shared and that various devices can be coupled to each other easily and can be controlled easily.The system for controlling devices and information on a network by hand gestures can remarkably improve the interaction between various input and display devices and a user under a ubiquitous computing environment.