Abstract:
A flexible thermoelectric structure is provided, which includes a porous thermoelectric pattern having a first surface and a second surface opposite to the first surface, and a polymer film covering the first surface of the porous thermoelectric pattern. The polymer film fills pores of the porous thermoelectric pattern. The polymer film has a first surface and a second surface opposite to the first surface. The second surface of the polymer film is coplanar with the second surface of the porous thermoelectric pattern.
Abstract:
A flexible substrate embedded with wires is provided. The flexible substrate embedded with wires includes a flexible substrate constituted by a polymer material, and a continuous wire pattern containing a plurality of pores embedded in the flexible substrate, wherein the polymer material fills the pores. A method for fabricating a flexible substrate embedded with wires is also provided.
Abstract:
A flexible thermoelectric structure is provided, which includes a porous thermoelectric pattern having a first surface and a second surface opposite to the first surface, and a polymer film covering the first surface of the porous thermoelectric pattern. The polymer film fills pores of the porous thermoelectric pattern. The polymer film has a first surface and a second surface opposite to the first surface. The second surface of the polymer film is coplanar with the second surface of the porous thermoelectric pattern.
Abstract:
The disclosure provides a photocatalyst material and a method for fabricating the same. The photocatalyst material includes a zinc oxide material doped with metal, wherein the zinc oxide material has a lattice structure including a plurality of defects. A part of the defects are filled with a metal,