Abstract:
This disclosure relates to an apparatus and methods for applying X-ray reflectometry (XRR) in characterizing three dimensional nanostructures supported on a flat substrate with a miniscule sampling area and a thickness in nanometers. In particular, this disclosure is targeted for addressing the difficulties encountered when XRR is applied to samples with intricate nanostructures along all three directions, e.g. arrays of nanostructured poles or shafts. Convergent X-ray with long wavelength, greater than that from a copper anode of 0.154 nm and less than twice of the characteristic dimensions along the film thickness direction, is preferably used with appropriate collimations on both incident and detection arms to enable the XRR for measurements of samples with limited sample area and scattering volumes.
Abstract:
The disclosure provides an apparatus for aligning first and second plates that are parallel to each other and have the same orientation. The apparatus includes a detector that detects composite small-angle X-ray scattering emitted from patterns of the first and second plates that are perpendicularly impinged by X-ray, and a moving unit that aligns the first and second plates according to a composite amplitude distribution of the composite small-angle X-ray scattering. Therefore, the first and second plates are aligned to each other accurately.
Abstract:
This disclosure relates to an apparatus and methods for applying X-ray reflectometry (XRR) in characterizing three dimensional nanostructures supported on a flat substrate with a miniscule sampling area and a thickness in nanometers. In particular, this disclosure is targeted for addressing the difficulties encountered when XRR is applied to samples with intricate nanostructures along all three directions, e.g. arrays of nanostructured poles or shafts. Convergent X-ray with long wavelength, greater than that from a copper anode of 0.154 nm and less than twice of the characteristic dimensions along the film thickness direction, is preferably used with appropriate collimations on both incident and detection arms to enable the XRR for measurements of samples with limited sample area and scattering volumes. In one embodiment, the incident angle of the long-wavelength focused X-ray is ≥24°, and the sample area is ≤25 μm×25 μm.
Abstract:
The present disclosure relates to a device and a method for measuring a thickness of an ultrathin film on a solid substrate. The thickness of the target ultrathin film is measured from the intensity of the fluorescence converted by the substrate and leaking and tunneling through the target ultrathin film at low detection angle. The fluorescence generated from the substrate has sufficient and stable high intensity, and therefore can provide fluorescence signal strong enough to make the measurement performed rapidly and precisely. The detection angle is small, and therefore the noise ratio is low, and efficiency of thickness measurement according to the method disclosed herein is high. The thickness measurement method can be applied into In-line product measurement without using standard sample, and therefore the thickness of the product can be measured rapidly and efficiently.
Abstract:
An apparatus and methods for small-angle electron beam scattering measurements in a reflection or a backscattering mode are provided. The apparatus includes an electron source, electron collimation optics before a sample, electron projection optics after the sample, a sample stage capable of holding the sample, and a electron detector module. The electrons emitted from the source are collimated and positioned to impinge nanostructures on the sample. The signals resulting from the interactions between the impinging electrons and the nanostructures are further magnified by the electron projection optics to reach a sufficient angular resolution before recorded by the electron detector module.
Abstract:
This application relates to an apparatus and methods for enhancing the performance of X-ray reflectometry (XRR) when used in characterizing thin films and nanostructures supported on a flat substrate. In particular, this application is targeted for addressing the difficulties encountered when XRR is applied to samples with very limited sampling volume, i.e. a combination of small sampling area and miniscule sample thickness or structure height. Point focused X-ray with long wavelength, greater than that from a copper anode or 0.154 nm, is preferably used with appropriately controlled collimations on both incident and detection arms to enable the XRR measurements of samples with limited volumes.
Abstract:
According to an embodiment of the present disclosure, an analysis apparatus may include a movable carrier, a sample providing device and a first analysis device. The movable carrier has at least one sample carry region, and moves the sample carry region to at least one collection position and an analysis position. The sample providing device provides a plurality of samples, wherein the sample carry region receives a portion of the samples at the collection position. The first analysis device may be aligned to the analysis position, and analyzes the samples on the sample carry region located at the analysis position.
Abstract:
The disclosure provides an apparatus for aligning first and second plates that are parallel to each other and have the same orientation. The apparatus includes a detector that detects composite small-angle X-ray scattering emitted from patterns of the first and second plates that are perpendicularly impinged by X-ray, and a moving unit that aligns the first and second plates according to a composite amplitude distribution of the composite small-angle X-ray scattering. Therefore, the first and second plates are aligned to each other accurately.
Abstract:
An inspection method and an inspection platform applicable for inspecting a light source used to expose a substrate. The light source is adapted to form an illuminated area on a surface of the substrate. The inspection method includes the following steps: placing at least one inspection component on the surface of the substrate; causing the at least one inspection component and the illuminated area to have a relative movement and a relative speed in a specific direction so as to make the illuminated area move across the at least one inspection component, wherein in the specific direction, the illuminated area is smaller in size than the at least one inspection component; inspecting photon energy of incident light in the illuminated area by the at least one inspection component during the relative movement; and determining optical values of the light source according to the photon energy and the relative speed.
Abstract:
This disclosure relates to an X-ray reflectometry apparatus and a method for measuring a three-dimensional nanostructure on a flat substrate. The X-ray reflectometry apparatus comprises an X-ray source, an X-ray reflector, a 2-dimensional X-ray detector, and a two-axis moving device. The X-ray source is for emitting X-ray. The X-ray reflector is configured for reflecting the X-ray onto a sample surface. The 2-dimensional X-ray detector is configured to collect a reflecting X-ray signal from the sample surface. The two-axis moving device is configured to control two-axis directions of the 2-dimensional X-ray detector to move on at least one of x-axis and z-axis with a formula concerning an incident angle of the X-ray with respect to the sample surface for collecting the reflecting X-ray signal.