Abstract:
Examples are disclosed for a mobile device to wirelessly dock to a device. In some examples, a mobile device may receive an indication to identify a device for wirelessly docking. The mobile device may gather identification for possible devices to wirelessly dock. A ranging technique may be implemented using a given frequency band to identify a device within a shortest distance from the mobile device from among the possible devices. The device having the shortest distance may be selected and a wireless dock may then be established. Other examples are described and claimed.
Abstract:
Disclosed herein are techniques to enable remote discovery of connectivity capabilities and remote connection of devices in a power efficient manner. In particular, discovery and connection requests for connectivity capabilities utilizing a first radio may be communicated using a second radio, the second radio utilizing a lower amount of power relative to the first radio. For example, connectivity capabilities such as Wi-Fi, Wi-Fi Direct, WiGig, Zigbee can be discovered and connection request communicated using a Bluetooth radio.
Abstract:
Techniques for supporting variable channel bandwidths in a wireless communications network are described. In one embodiment, for example, an apparatus may comprise a processor circuit and a communications management module, and the communications management module may be operable by the processor circuit to determine a channel bandwidth for communication over a channel of a wireless network, transmit a beamforming initiation message comprising a channel bandwidth parameter indicating the determined channel bandwidth, receive a beamforming initiation confirmation message confirming the channel bandwidth parameter, perform a beamforming training sequence to determine one or more beamforming parameters, and transmit one or more messages over the channel according to the determined channel bandwidth and the one or more beamforming parameters. Other embodiments are described and claimed.
Abstract:
Techniques are disclosed for discovery of Wi-Fi serial bus and Wi-Fi docking services. Such networks include (but are not limited to) IEEE 802.11 networks.
Abstract:
Techniques for millimeter-wave (mmWave)-capable small cell detection are described. In one embodiment, for example, a mobile communication device may comprise at least one radio frequency (RF) transceiver, at least one RF antenna, and logic, at least a portion of which is in hardware, the logic to receive initiator sector sweep (ISS) monitoring instructions identifying one or more millimeter-wave (mmWave) frequency channels to be monitored, perform an ISS monitoring procedure comprising monitoring the one or more mmWave frequency channels, and send an ISS monitoring report indicating whether any mmWave-capable boosters have been detected during the ISS monitoring procedure. Other embodiments are described and claimed.
Abstract:
In some embodiments, a first user device may synchronize a time associated with a second user device. The first user device may generate a neighbor awareness network (NAN) service discovery frame. The first user device may transmit the NAN service discovery frame to the second user device. The first user device may receive a request frame from the second user device based at least in part on transmitting the NAN service discovery frame, wherein the request frame comprises a request for ranging or location information from the first user device. The first user device may receive a NAN service discovery frame from the second user device, wherein the NAN service discovery frame comprises a request for ranging or location information from the first user device. The first user device may transmit a response frame comprising the ranging or location information in response to the received request frame.
Abstract:
Various embodiments are generally directed to parameter encoding techniques for wireless communication networks. In various embodiments, a transmitting device may communicate a plurality of wireless communication parameter values using a single index value comprised in a field of a header or frame. In various embodiments, a receiving device may use the index value to identify the plurality of wireless communication parameter values by consulting mapping information specifying mappings of possible index values to respective sets of parameter values. In some embodiments, the mapping information may specify mappings associated with a defined mapping scheme.
Abstract:
Methods and apparatus for contention based spatial sharing in wireless communications. An example first wireless communications device includes: a memory to store data for transmission; a priority controller to: determine an estimated transmission time; set a contention window setting based on the estimated transmission time; a media access control to: wait for a timer to expire, a duration of the timer selected based on the contention window setting; and transmit the data when the timer expires.
Abstract:
Disclosed herein are techniques to enable remote discovery of connectivity capabilities and remote connection of devices in a power efficient manner. In particular, discovery and connection requests for connectivity capabilities utilizing a first radio may be communicated using a second radio, the second radio utilizing a lower amount of power relative to the first radio. For example, connectivity capabilities such as Wi-Fi, Wi-Fi Direct, WiGig, Zigbee can be discovered and connection request communicated using a Bluetooth radio.
Abstract:
Techniques are disclosed for discovery of Wi-Fi serial bus and Wi-Fi docking services. Such networks include (but are not limited to) IEEE 802.11 networks.