Abstract:
Techniques are disclosed for providing on-chip capacitance using through-body-vias (TBVs). In accordance with some embodiments, a TBV may be formed within a semiconductor layer, and a dielectric layer may be formed between the TBV and the surrounding semiconductor layer. The TBV may serve as one electrode (e.g., anode) of a TBV capacitor, and the dielectric layer may serve as the dielectric body of that TBV capacitor. In some embodiments, the semiconductor layer serves as the other electrode (e.g., cathode) of the TBV capacitor. To that end, in some embodiments, the entire semiconductor layer may comprise a low-resistivity material, whereas in some other embodiments, low-resistivity region(s) may be provided just along the sidewalls local to the TBV, for example, by selective doping in those location(s). In other embodiments, a conductive layer formed between the dielectric layer and the semiconductor layer serves as the other electrode (e.g., cathode) of the TBV capacitor.
Abstract:
Techniques for providing non-volatile antifuse memory elements and other antifuse links are disclosed herein. In some embodiments, the antifuse memory elements are configured with non-planar topology such as FinFET topology. In some such embodiments, the fin topology can be manipulated and used to effectively promote lower breakdown voltage transistors, by creating enhanced-emission sites which are suitable for use in lower voltage non-volatile antifuse memory elements. In one example embodiment, a semiconductor antifuse device is provided that includes a non-planar diffusion area having a fin configured with a tapered portion, a dielectric isolation layer on the fin including the tapered portion, and a gate material on the dielectric isolation layer. The tapered portion of the fin may be formed, for instance, by oxidation, etching, and/or ablation, and in some cases includes a base region and a thinned region, and the thinned region is at least 50% thinner than the base region.
Abstract:
Low leakage non-planar access transistors for embedded dynamic random access memory (eDRAM) and methods of fabricating low leakage non-planar access transistors for eDRAM are described. For example, a semiconductor device includes a semiconductor fin disposed above a substrate and including a narrow fin region disposed between two wide fin regions. A gate electrode stack is disposed conformal with the narrow fin region of the semiconductor fin, the gate electrode stack including a gate electrode disposed on a gate dielectric layer. The gate dielectric layer includes a lower layer and an upper layer, the lower layer composed of an oxide of the semiconductor fin. A pair of source/drain regions is included, each of the source/drain regions disposed in a corresponding one of the wide fin regions.
Abstract:
Vertical non-planar semiconductor devices for system-on-chip (SoC) applications and methods of fabricating vertical non-planar semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a substrate, the semiconductor fin having a recessed portion and an uppermost portion. A source region is disposed in the recessed portion of the semiconductor fin. A drain region is disposed in the uppermost portion of the semiconductor fin. A gate electrode is disposed over the uppermost portion of the semiconductor fin, between the source and drain regions.