Abstract:
Described is an apparatus which comprises: a backside of a first die having a redistribution layer (RDL); and one or more passive planar devices disposed on the backside, the one or more passive planar devices formed in the RDL.
Abstract:
Embodiments described herein relate generally to monitoring a dining session using smart smallwares. A smart smallware may sense usage or non-usage associated with a dining session of a customer. Based on the sensed non-usage of the smart smallware, the smart smallware may detect a period of inactivity. In response to the detected period of inactivity, the smart smallware may transmit an indication of the detected period of inactivity. This transmitted indication may cause an external monitoring device to notify a waitperson that a customer associated with that smart smallware may require attention. Other embodiments may be described and/or claimed.
Abstract:
Described is an apparatus which comprises: a backside of a first die having a redistribution layer (RDL); and one or more passive planar devices disposed on the backside, the one or more passive planar devices formed in the RDL.
Abstract:
Processes, apparatuses, and systems associated with usage and contextual-based elevator operations management that have the capability to learn and to constantly adapt to usage patterns on a temporal basis through continuous monitoring of elevator journeys. An elevator journey may include a start and termination floor for an individual. Elevator journey data may be used to predict patterns of usage and maybe used, for example, to optimize the number of elevators operational at any time, determine the optimal parking position of each elevator, and/or determine an efficient allocation of elevators to groups or related floors.
Abstract:
Embodiments of the present disclosure provide techniques and configurations for an orthotic device. In one instance, the device may include an orthotic device body and at least two sensors spatially disposed inside the orthotic device body. A first sensor may provide a first output responsive to pressure resulting from application of mechanical force to the orthotic device body. A second sensor may provide a second output responsive to flexing resulting from the application of mechanical force to the orthotic device body. The device may also include a control unit communicatively coupled with the sensors to receive and process the outputs provided by the sensors in response to pressure and flexing. Other embodiments may be described and/or claimed.
Abstract:
In an embodiment, a system includes voltage sensing logic to determine a first source voltage Vfirst source corresponding to a first source, and a controller to receive an indication of Vfirst source from the voltage sensing logic. The controller is to, responsive to Vfirst source>a first output voltage (V1), select a first source first regulator to input Vfirst source and provide V1; responsive to Vfirst source>a second output voltage (V2), select a first source second voltage regulator that inputs Vfirst source, and provide V2; responsive to Vfirst source≤V1, select a second source first voltage regulator that inputs a second source voltage Vsecond source that corresponds to a second source and is substantially constant in time where Vsecond source>V1, and provide V1 independent of the first source first regulator and the first source second voltage regulator. Other embodiments are described and claimed.
Abstract:
Processes, apparatuses, and systems associated with usage and contextual-based elevator operations management are disclosed herein. The operations management system may have the capability to learn and to constantly adapt to usage patterns on a temporal basis through continuous monitoring of elevator journeys. In embodiments, an elevator journey may include a start and termination floor for an individual. This data may be used to predict patterns of usage and maybe used, for example, to optimize the number of elevators operational at any time, determine the optimal parking position of each elevator, and/or determine an efficient allocation of elevators to groups or related floors. Other embodiments may be described and/or claimed.
Abstract:
A method monitors the consumption of materials, including determining the presence of materials in a smart receptacle using a sensor located in the smart receptacle. A server is alerted when an actionable item is detected.
Abstract:
Embodiments of the present disclosure provide techniques and configurations for an orthotic device. In one instance, the device may include an orthotic device body and at least two sensors spatially disposed inside the orthotic device body. A first sensor may provide a first output responsive to pressure resulting from application of mechanical force to the orthotic device body. A second sensor may provide a second output responsive to flexing resulting from the application of mechanical force to the orthotic device body. The device may also include a control unit communicatively coupled with the sensors to receive and process the outputs provided by the sensors in response to pressure and flexing. Other embodiments may be described and/or claimed.
Abstract:
Technologies for the sensing of biofeedback signals of a user include a body area network (BAN) system comprising one or more biofeedback sensors and one or more BAN controllers. The biofeedback sensors are configured to sense BAN signals, which may include biofeedback signals and body-coupled communication (BCC) signals. To facilitate communication, the biofeedback sensors may demultiplex the sensed BAN signals into biofeedback signals and incoming BCC signals. Similarly, the biofeedback sensors may multiplex outgoing BCC signals with sensed biofeedback signals. The BAN controller may communicate in a similar manner. Additionally, the BAN controller may process incoming BCC signals and provide feedback to the user based on BCC signals received from the biofeedback sensors.