Abstract:
A system includes a host processor (105) and a peripheral device (708). The host processor (105) is coupled to the peripheral device (708) by a Peripheral Component Interconnect Express (PCIe) compliant link. The peripheral device (708) can include logic circuitry to identify, based on an application using the device and the host processor (105), a read to write ratio utilized by the application; and provide the read to write ratio to the host processor (105). The host processor (105) comprising logic circuitry to send a command signal to a device in communication with the hardware processor across a peripheral component interconnect express (PCIe) compliant link, the command signal indicating a transmission (TX) lane to receive (RX) lane ratio, the TX lane to RX lane ratio corresponding to the read to write ratio identified by the peripheral device (708); and receive an indication that the device is capable of supporting asymmetric TX and RX ratios.
Abstract:
A system includes a host processor (105) and a peripheral device (708). The host processor (105) is coupled to the peripheral device (708) by a Peripheral Component Interconnect Express (PCIe) compliant link. The peripheral device (708) can include logic circuitry to identify, based on an application using the device and the host processor (105), a read to write ratio utilized by the application; and provide the read to write ratio to the host processor (105). The host processor (105) comprising logic circuitry to send a command signal to a device in communication with the hardware processor across a peripheral component interconnect express compliant link, the command signal indicating a transmission (TX) lane to receive (RX) lane ratio, the TX lane to RX lane ratio corresponding to the read to write ratio identified by the peripheral device (708); and receive an indication that the device is capable of supporting asymmetric TX and RX ratios.
Abstract:
Systems, apparatuses, and methods may include a first power source to output power at a first normal power level and a first peak power level and a second power source cooperating with the first power source to output power at a second normal power level and a second peak power level. A system peak power control unit may monitor workload power requirements and cause the first power source to output the first peak power level at a first time period and cause the second power source to output the second peak power level at a second time period, different from the first time period. The time periods may be contiguous or discontiguous.
Abstract:
In some examples, a control unit is configured to control a computer server rack having a first grid power source, a second grid power source, and a battery backup system. The control unit is adapted to monitor a failed status of one or more power supply units in the computer server rack, to determine location information relating to the one or more power supply units having the failed status, to determine input power of the one or more power supply units having the failed status, to adjust an input power of the first grid power source based on the determined input power, and to adjust an input power of the second grid power source based on the determined input power.
Abstract:
A device includes control logic, at least a portion of which is implemented in hardware, to process motion data, the motion data collected from a first accelerometer in a base unit and from a second accelerometer in a display panel attached to a base unit of a mobile device, to determine whether the display panel moves relative to the base unit and to temporarily ignore or disable one or more input devices of the mobile device for a predetermined period of time to avoid unintentional user interaction with the mobile device during the movement of the display panel.
Abstract:
According to one embodiment, a device includes control logic, at least a portion of which is implemented in hardware, to process motion data, the motion data collected from a first accelerometer in a base unit and from a second accelerometer in a display panel attached to a base unit of a mobile device, to determine whether the display panel moves relative to the base unit and to temporarily ignore or disable one or more input devices of the mobile device for a predetermined period of time to avoid unintentional user interaction with the mobile device during the movement of the display panel.
Abstract:
According to one embodiment, a device includes control logic, at least a portion of which is implemented in hardware, to process motion data, the motion data collected from a first accelerometer in a base unit and from a second accelerometer in a display panel attached to a base unit of a mobile device, to determine whether the display panel moves relative to the base unit and to temporarily ignore or disable one or more input devices of the mobile device for a predetermined period of time to avoid unintentional user interaction with the mobile device during the movement of the display panel.
Abstract:
In some examples, a control unit is configured to control a computer server rack having a first grid power source, a second grid power source, and a battery backup system. The control unit is adapted to monitor a failed status of one or more power supply units in the computer server rack, to determine location information relating to the one or more power supply units having the failed status, to determine input power of the one or more power supply units having the failed status, to adjust an input power of the first grid power source based on the determined input power, and to adjust an input power of the second grid power source based on the determined input power.
Abstract:
According to one embodiment, a device includes control logic, at least a portion of which is implemented in hardware, to process motion data, the motion data collected from a first accelerometer in a base unit and from a second accelerometer in a display panel attached to a base unit of a mobile device, to determine whether the display panel moves relative to the base unit and to temporarily ignore or disable one or more input devices of the mobile device for a predetermined period of time to avoid unintentional user interaction with the mobile device during the movement of the display panel.