Abstract:
Methods and structures for forming a localized silicon-on-insulator (SOI) finFET are disclosed. Fins are formed on a bulk substrate. Nitride spacers protect the fin sidewalls. A shallow trench isolation region is deposited over the fins. An oxidation process causes oxygen to diffuse through the shallow trench isolation region and into the underlying silicon. The oxygen reacts with the silicon to form oxide, which provides electrical isolation for the fins. The shallow trench isolation region is in direct physical contact with the fins and/or the nitride spacers that are disposed on the fins.
Abstract:
A nanowire field effect transistor device includes a first nanowire having a first distal end connected to a source region, a second distal end connected to a drain region, and a channel region therebetween, the source region and the drain region arranged on a substrate, and a second nanowire having a first distal end connected to the source region and a second distal end connected to the drain region, and a channel region therebetween, a longitudinal axis of the first nanowire and a longitudinal axis of the second nanowire defining a plane, the plane arranged substantially orthogonal to a plane defined by a planar surface of the substrate.
Abstract:
Fin-defining mask structures are formed over a semiconductor material layer. A semiconductor material portion is formed by patterning the semiconductor material layer, and a disposable gate structure is formed over the fin-defining mask structures. After formation of a disposable template layer, the disposable gate structure is removed. A plurality of semiconductor fins are formed by etching center portions of the semiconductor material portion employing the combination of the disposable template layer and the fin-defining mask structures as an etch mask. A first pad region and a second pad region laterally contact the plurality of semiconductor fins. A replacement gate structure is formed on the plurality of semiconductor fins. The disposable template layer is removed, and the first pad region and the second pad regions are vertically recessed. Vertical source/drain junctions can be formed by introducing dopants through vertical sidewalls of the recessed source and second pad regions.