摘要:
Methods and structures for forming a localized silicon-on-insulator (SOI) finFET are disclosed. Fins are formed on a bulk substrate. Nitride spacers protect the fin sidewalls. A shallow trench isolation region is deposited over the fins. An oxidation process causes oxygen to diffuse through the shallow trench isolation region and into the underlying silicon. The oxygen reacts with the silicon to form oxide, which provides electrical isolation for the fins. The shallow trench isolation region is in direct physical contact with the fins and/or the nitride spacers that are disposed on the fins.
摘要:
Embodiments include multi-fin finFET structures with epitaxially-grown merged source/drains and methods of forming the same. Embodiments may include an epitaxial insulator layer above a base substrate, a gate structure above the epitaxial insulator layer, a semiconductor fin below the gate structure, and an epitaxial source/drain region grown on the epitaxial insulator layer adjacent to an end of the semiconductor fin. The epitaxial insulator layer may be made of an epitaxial rare earth oxide material grown on a base semiconductor substrate. Embodiments may further include fin extension regions on the end of the semiconductor fin between the end of the end of the semiconductor fin and the epitaxial source/drain region. In some embodiments, the end of the semiconductor fin may be recessed below the gate structure.
摘要:
An improved bulk FinFET with a punchthrough stopper region, and method of fabrication are disclosed. The dopants used to form the punchthrough stopper are supplied from a shallow trench isolation liner. An anneal diffuses the dopants from the shallow trench isolation liner into the bulk substrate and lower portion of the fins, to form the punchthrough stopper region.