Abstract:
A wear leveling technique is employed in a memory device so that the cycling history of a memory block is represented by the cycling history of a representative memory cell or a small number of representative memory cells. A control logic block tracks the cycling history of the one or more representative memory cells. A table tabulating the predicted shift in an optimal value for a reference variable for a sensing circuit as a function of cycling history is provided within the memory device. Prior to sensing a memory cell, the control logic block checks the total number of cycling in the one or more representative memory cells and adjusts the value for the reference variable in the sensing circuit, thereby providing an optimal value for the reference variable in the sensing circuit for each sensing cycle of the memory device.
Abstract:
A memory system, system including the memory system and method of reducing memory system power consumption. The memory system includes multiple memory units allocable to one of a number of processor units, e.g., processors or processor cores. A memory controller receives requests for memory from the processor units and allocates sufficient space from the memory to each requesting processor unit. Allocated memory can include some Single Level per Cell (SLC) memory units storing a single bit per cell and other memory units storing more than one bit per cell. Thus, two processor units may be assigned identical memory space, while half, or fewer, than the number of cells of one are assigned to the other.
Abstract:
A wear leveling technique is employed in a memory device so that the cycling history of a memory block is represented by the cycling history of a representative memory cell or a small number of representative memory cells. A control logic block tracks the cycling history of the one or more representative memory cells. A table tabulating the predicted shift in an optimal value for a reference variable for a sensing circuit as a function of cycling history is provided within the memory device. Prior to sensing a memory cell, the control logic block checks the total number of cycling in the one or more representative memory cells and adjusts the value for the reference variable in the sensing circuit, thereby providing an optimal value for the reference variable in the sensing circuit for each sensing cycle of the memory device.
Abstract:
A wear leveling technique is employed in a memory device so that the cycling history of a memory block is represented by the cycling history of a representative memory cell or a small number of representative memory cells. A control logic block tracks the cycling history of the one or more representative memory cells. A table tabulating the predicted shift in an optimal value for a reference variable for a sensing circuit as a function of cycling history is provided within the memory device. Prior to sensing a memory cell, the control logic block checks the total number of cycling in the one or more representative memory cells and adjusts the value for the reference variable in the sensing circuit, thereby providing an optimal value for the reference variable in the sensing circuit for each sensing cycle of the memory device.
Abstract:
A memory system, system including the memory system and method of reducing memory system power consumption. The memory system includes multiple memory units allocable to one of a number of processor units, e.g., processors or processor cores. A memory controller receives requests for memory from the processor units and allocates sufficient space from the memory to each requesting processor unit. Allocated memory can include some Single Level per Cell (SLC) memory units storing a single bit per cell and other memory units storing more than one bit per cell. Thus, two processor units may be assigned identical memory space, while half, or fewer, than the number of cells of one are assigned to the other.
Abstract:
A wear leveling technique is employed in a memory device so that the cycling history of a memory block is represented by the cycling history of a representative memory cell or a small number of representative memory cells. A control logic block tracks the cycling history of the one or more representative memory cells. A table tabulating the predicted shift in an optimal value for a reference variable for a sensing circuit as a function of cycling history is provided within the memory device. Prior to sensing a memory cell, the control logic block checks the total number of cycling in the one or more representative memory cells and adjusts the value for the reference variable in the sensing circuit, thereby providing an optimal value for the reference variable in the sensing circuit for each sensing cycle of the memory device.