Abstract:
An in-plane switching mode liquid crystal display device including first and second substrates having an array region and a sealant region along a periphery of the array region, a sealant in the sealant region attaching the first and second substrates, a metallic black matrix formed in the sealant region and in the array region of the first substrate, a color filter on the metallic black matrix, an organic layer on the color filter and a liquid crystal layer between the first and second substrates.
Abstract:
The present invention provides a transflective LCD device that has a common contrast ratio in both the transmissive mode and the reflective mode. It also discloses a transflective LCD device that has an equal luminance in both the transmissive mode and the reflective mode. The transflective LCD device includes first and second substrates; a transparent conductive electrode on the first substrate; a lower passivation layer on the transparent conductive electrode; a reflective electrode formed on the lower passivation layer, the reflective electrode including a transmitting hole; a first QWP (quarter wave plate) under the first substrate; a lower polarizer formed under the first QWP; a second QWP on the second substrate; an upper polarizer formed on the second QWVP; an upper passivation layer under the second substrate; a transparent common electrode under the upper passivation layer; a liquid crystal layer interposed between the first and second substrates; and a backlight device arranged below the second substrate.
Abstract:
The method of manufacturing a liquid crystal display includes the step of forming, on a substrate, a gate line, at least one gate electrode branching out of the gate line, and a gate pad disposed at an end portion of the gate line. Then, a gate insulating layer is formed over the substrate and on the gate line, the gate electrode and the gate pad, and a dummy gate pad is formed on the gate insulating layer over at least a portion of the periphery of the gate pad. The dummy gate pad prevents etchant used during the fabrication process of the liquid crystal display from penetrating into the periphery of the gate pad.
Abstract:
An array substrate for a fringe field switching mode liquid crystal display device includes a substrate including a display region and a non-display; a gate line on the substrate and in the display region; a common pad on the substrate and in the non-display region; a gate insulating layer on the gate line and the common pad; a data line on the gate insulating layer and crossing the gate line to define a pixel region in the display region; a thin film transistor connected to the gate and data lines; a first passivation layer on the data line and the thin film transistor; a common electrode on the first passivation layer and covering an entire surface of the display region; a second passivation layer on the common electrode; and a pixel electrode on the second passivation layer and having a plate shape in each pixel region.
Abstract:
An array substrate for a fringe field switching mode liquid crystal display device comprises a gate line on a substrate; a gate electrode connected to the gate line; a gate insulating layer on the gate line and the gate electrode; a semiconductor layer on the gate insulating layer and corresponding to the gate electrode; source and drain electrodes on the semiconductor layer and spaced apart from each other, the source electrode having first and second sub-source layers, the drain electrode having first and second sub-drain layers. Also disclosed in a method of fabricating a fringe field switching mode liquid crystal display device.
Abstract:
A method includes: forming a gate electrode and a gate line at a pixel part of a first substrate through a first masking process; forming a gate insulation film; forming an active pattern and source/drain electrodes and forming a data line crossing the gate line through a second masking process; forming a passivation layer; forming a photosensitive film pattern including a first pattern and a second pattern through a third masking process; selectively removing a portion of the passivation layer to form a first contact hole exposing a portion of the drain electrode; removing portions of the first and second patterns to remove the second pattern and form a third pattern; removing the third pattern and a conductive film on the third pattern to form a pixel electrode electrically connected with the drain electrode via the first contact hole; and attaching the first and second substrates.
Abstract:
A liquid crystal display device has stripe-shaped color filters and arranges the driver ICs on the top or the bottom side portion, and on the left or right side portion of the liquid crystal panel such that the liquid crystal display device has a single bank structure. Accordingly, a difference of a signal delay between the adjacent two odd and even data or gate lines is prevented. As a result, the brightness and the resolution are improved.
Abstract:
An LCD device and method of forming the same includes a transparent insulation substrate, a plurality of scan lines and data lines perpendicularly crossing each other on the substrate, a metal segment layer overlapping the scan line, a pixel electrode formed at the area surrounded by two neighboring scan lines and two neighboring data lines for contacting with the metal segment, and a switching element electrically connected with the pixel electrode, the scan line and the data line. The pixel electrode or the metal segment layer has at least one small width projecting portion for allowing contact between the metal segment layer and the pixel electrode through a contact hole.
Abstract:
An array substrate for an in-plane switching mode liquid crystal display device includes: a substrate; a gate line on the substrate; first and second common lines parallel to and spaced apart from the gate line; a data line crossing the gate line to define a pixel region; a thin film transistor connected to the gate line and the data line; a pixel electrode connected to the thin film transistor, the pixel electrode having a plate shape; a plurality of common electrodes connected between the first and second common lines, the plurality of common electrodes overlapping the pixel electrode; and first and second shielding electrodes parallel to the data line, the first and second shielding electrodes spaced apart from each other with respect to the data line.
Abstract:
An IPS-LCD panel includes first and second substrates, and a liquid crystal interposed therebetween. The first substrate includes common and pixel electrodes that are formed of a transparent conductive material. Because the common and pixel electrodes are transparent, aperture ratios of the inventive IPS-LCD panel are increased. Another IPS-LCD panel includes opaque pixel electrodes and transparent common electrodes. In forming the opaque pixel electrodes, a black matrix of the same material as the pixel electrodes is also formed on the first substrate. Because the inventive black matrix is much smaller than a conventional one, the aperture ratios of the second inventive IPS-LCD panel become higher.