摘要:
Disclosed is a separator for a fuel cell made of a metal plate comprising both a cooling water flow field and a gas flow field formed on each surface thereof, wherein the separator consists of the joined metal plates for the cooling water flow fields to face each other, the surfaces of the joined metal plates are coated with TiN, a polymer electrolyte membrane fuel cell comprising the separator and a method for manufacturing the separator.
摘要:
Disclosed is a Ni-Al alloy anode for molten carbonate fuel cell made by in-situ sintering the Ni-Al alloy. Further, disclosed is a method for preparing the same comprising steps of preparing a sheet with Ni-Al alloy powders (S1); and installing the sheet in a fuel cell without any heat treatment for sintering the Ni-Al alloy in the sheet and then in-situ sintering the Ni-Al alloy in the sheet during a pretreatment process of the cell with the sheet (S2), wherein a reaction activity of the Ni-Al alloy anode can be maintained, the method is simple and economic, and a mass production of the Ni-Al alloy anode and a scale-up in the method are easy.
摘要:
Provided is an MEA for fuel cell containing hygroscopic inorganic material such as TEOS (tetraethylorthosilicate), zirconium propoxide or titanium t-butoxide.
摘要:
Disclosed are a multi-layered electrode for fuel cell and a method for producing the same, wherein the electrode can be operated under non-humidification and normal temperature, the flooding of the electrode catalyst layer can be prevented, and the long-term operation characteristic can be increased due to the prevention of the loss of the electrode catalyst layer.
摘要:
A separator for cooling an MCFC has a cooling gas flow path provided in the separator, a cooling anode gas or a cooling cathode gas flowing through the cooling gas flow path, the cooling anode gas or the cooling cathode gas having a temperature lower than that of a general anode gas or a general cathode gas which is supplied to an anode or a cathode of the MCFC.
摘要:
In a method for manufacturing Ni—Al alloy powders for electrode materials of fuel cells, in which, using aluminum chloride (AlCl3) as a catalyst, powders of Ni and Al, that have been used as electrode materials, are chemically reacted with each other to diffuse the Al into the Ni powders, so that Ni—Al alloy powders can be manufactured at a low temperature below fusion points of Ni and Al while maintaining a shape and a size of the existing Ni powders as they are, thus providing a manufacturing process of Ni—Al alloy powders that is simple, economical, compatible in working, and ready for scale-up, and in which a conventional manufacturing process of electrode based on Ni is used as it is, so that large sized electrode is manufactured.
摘要:
In a method for manufacturing Ni—Al alloy anode for fuel cells, in which, using nickel powders, Ni powders are mixed with Ni—Al alloy powders, which are hardly sintered in themselves, to assist a sintering of Ni—Al alloy, whereby Ni—Al alloy anode can be manufactured simply, economically and compatibly with mass production even by a conventional manufacturing process for an electrode.
摘要:
Disclosed is a Ni—Al alloy anode for molten carbonate fuel cell made by in-situ sintering the Ni—Al alloy. Further, disclosed is a method for preparing the same comprising steps of preparing a sheet with Ni—Al alloy powders (S1); and installing the sheet in a fuel cell without any heat treatment for sintering the Ni—Al alloy in the sheet and then in-situ sintering the Ni—Al alloy in the sheet during a pretreatment process of the cell with the sheet (S2), wherein a reaction activity of the Ni—Al alloy anode can be maintained, the method is simple and economic, and a mass production of the Ni—Al alloy anode and a scale-up in the method are easy.
摘要:
Provided is an MEA for fuel cell containing hygroscopic inorganic material such as TEOS (tetraethylorthosilicate), zirconium propoxide or titanium t-butoxide.
摘要:
Disclosed is a catalyst for a partial oxidation reforming reaction of fuel in the form of disk having through-hole. In addition, according to the invention, there is provided a fuel reforming apparatus and method using the catalyst. The catalyst for a partial oxidation reforming reaction of fuel according to the invention makes it possible to progress the partial oxidation reforming reaction of fuel smoothly, to improve the efficiency when reforming the fuel and to simplify the fuel reforming reactor. According to the fuel reforming apparatus and method, since the heat of reaction is efficiently controlled and used, a simple on-off operation, reduction of starting time and a stable operational condition are accomplished, which are indispensably required for a fuel reforming system in fuel cells, such as household, portable and car fuel cells.