Abstract:
The present subject matter describes a method and apparatus for operating a delayed coker. The method comprises contacting a vapour produced in a delayed coker-drum with a catalyst maintained in form of a bed, and maintaining a level of said catalyst-bed within pre-defined limits during catalytic-cracking of the vapour. Thereafter, the cracked-vapour is routed to a coker-fractionator column to trigger conversion into one or more hydrocarbon products.
Abstract:
The present invention relates to delayed coking of heavy petroleum residue producing petroleum coke and lighter hydrocarbon products. The invented process utilize a pre-cracking reactor for mild thermal cracking of the feedstock and an intermediate separator, before being subjected to higher severity thermal cracking in delayed coking process, resulting in reduction in overall coke yield.
Abstract:
The present invention relates to crude oil processing, particularly related to conversion of crude oil containing high amount of naphthenic acid compounds to lighter hydrocarbon materials with minimum capital expenditure. The invented process utilizes a novel scheme for high TAN crude oils by employing thermal cracking process to maximize the residue conversion to valuable products, which require minimum modifications in unit metallurgies and corrosion inhibitor injection schemes in refineries.
Abstract:
The present invention is directed to novel thermal cracking additive compositions for reduction of coke yield in Delayed Coking process and method for preparing the same. The present invention also provides that the thermal cracking additive compositions of the present invention are in micron-size and nano-size. Further, the present invention provides a process of thermal cracking of heavy petroleum residue used in petroleum refineries using Delayed Coking process to produce petroleum coke and lighter hydrocarbon products with decreased coke yield and increased yield of liquid and/or gaseous products.