Abstract:
A semiconductor device includes a semiconductor body having opposite first and second sides. The semiconductor device further includes a drift zone in the semiconductor body between the second side and a pn junction. A profile of net doping of the drift zone along at least 50% of a vertical extension of the drift zone between the first and second sides is undulated and includes doping peak values between 1×1013 cm−3 and 5×1014 cm−3. A device blocking voltage Vbr is defined by a breakdown voltage of the pn junction between the drift zone and a semiconductor region of opposite conductivity type that is electrically coupled to the first side of the semiconductor body.
Abstract:
A semiconductor device has a semiconductor body with bottom and top sides and a lateral surface. An active semiconductor region is formed in the semiconductor body and an edge region surrounds the active semiconductor region. A first semiconductor zone of a first conduction type is formed in the edge region. An edge termination structure having at least N field limiting structures is formed in the edge region. Each of the field limiting structures has a field ring and a separation trench formed in the semiconductor body, where N is at least 1. Each of the field rings has a second conduction type, forms a pn-junction with the first semiconductor zone and surrounds the active semiconductor region. For each of the field limiting structures, the separation trench of that field limiting structure is arranged between the field ring of that field limiting structure and the active semiconductor region.
Abstract:
A semiconductor device has a semiconductor body with bottom and top sides and a lateral surface. An active semiconductor region is formed in the semiconductor body and an edge region surrounds the active semiconductor region. A first semiconductor zone of a first conduction type is formed in the edge region. An edge termination structure having at least N field limiting structures is formed in the edge region. Each of the field limiting structures has a field ring and a separation trench formed in the semiconductor body, where N is at least 1. Each of the field rings has a second conduction type, forms a pn-junction with the first semiconductor zone and surrounds the active semiconductor region. For each of the field limiting structures, the separation trench of that field limiting structure is arranged between the field ring of that field limiting structure and the active semiconductor region.
Abstract:
A method of manufacturing a semiconductor device includes forming a profile of net doping in a drift zone of a semiconductor body by multiple irradiations with protons and generating hydrogen-related donors by annealing the semiconductor body. At least 50% of a vertical extension of the drift zone between first and second sides of the semiconductor body is undulated and includes multiple doping peak values between 1×1013 cm−3 and 5×1014 cm−3.
Abstract:
A semiconductor device includes a semiconductor body having opposite first and second sides. The semiconductor device further includes a drift zone in the semiconductor body between the second side and a pn junction. A profile of net doping of the drift zone along at least 50% of a vertical extension of the drift zone between the first and second sides is undulated and includes doping peak values between 1×1013 cm−3 and 5×1014 cm−3. A device blocking voltage Vbr is defined by a breakdown voltage of the pn junction between the drift zone and a semiconductor region of opposite conductivity type that is electrically coupled to the first side of the semiconductor body.