Abstract:
According to an embodiment, a transducer package includes a circuit board including a port, a lid disposed over the port, an acoustic transducer disposed over the port and including a membrane, and an environmental transducer disposed at the circuit board in the port. The lid encloses a first region, and the membrane separates the port from the first region. Other embodiments include corresponding systems, apparatus, and structures, each configured to perform the actions or steps of corresponding embodiment methods.
Abstract:
According to an embodiment, a method of sensing motion includes receiving a first signal from a first pressure sensor and a second signal from a second pressure sensor, comparing the first signal and the second signal, and characterizing a motion based on the comparing.
Abstract:
According to an embodiment, a transducer package includes a circuit board including a port, a lid disposed over the port, an acoustic transducer disposed over the port and including a membrane, and an environmental transducer disposed at the circuit board in the port. The lid encloses a first region, and the membrane separates the port from the first region. Other embodiments include corresponding systems, apparatus, and structures, each configured to perform the actions or steps of corresponding embodiment methods.
Abstract:
A packaged MEMS device and a method of calibrating a packaged MEMS device are disclosed. In one embodiment a packaged MEMS device comprises a carrier, a MEMS device disposed on the substrate, a signal processing device disposed on the carrier, a validation circuit disposed on the carrier; and an encapsulation disposed on the carrier, wherein the encapsulation encapsulates the MEMS device, the signal processing device and the memory element.
Abstract:
According to an embodiment, a method of sensing motion includes receiving a first signal from a first pressure sensor and a second signal from a second pressure sensor, comparing the first signal and the second signal, and characterizing a motion based on the comparing.
Abstract:
According to an embodiment, a method of sensing motion includes receiving a first signal from a first pressure sensor and a second signal from a second pressure sensor, comparing the first signal and the second signal, and characterizing a motion based on the comparing.
Abstract:
In various embodiments, a sensor structure is provided. The sensor structure may include a first conductive layer; an electrode element; and a second conductive layer arranged on an opposite side of the electrode element from the first conductive layer. The first conductive layer and the second conductive layer may form a chamber. The pressure in the chamber may be lower than the pressure outside of the chamber.
Abstract:
A packaged MEMS device and a method of calibrating a packaged MEMS device are disclosed. In one embodiment a packaged MEMS device comprises a carrier, a MEMS device disposed on the substrate, a signal processing device disposed on the carrier, a validation circuit disposed on the carrier; and an encapsulation disposed on the carrier, wherein the encapsulation encapsulates the MEMS device, the signal processing device and the memory element.
Abstract:
According to an embodiment, a transducer package includes a circuit board including a port, a lid disposed over the port, an acoustic transducer disposed over the port and including a membrane, and an environmental transducer disposed at the circuit board in the port. The lid encloses a first region, and the membrane separates the port from the first region. Other embodiments include corresponding systems, apparatus, and structures, each configured to perform the actions or steps of corresponding embodiment methods.
Abstract:
In various embodiments, a sensor structure is provided. The sensor structure may include a first conductive layer; an electrode element; and a second conductive layer arranged on an opposite side of the electrode element from the first conductive layer. The first conductive layer and the second conductive layer may form a chamber. The pressure in the chamber may be lower than the pressure outside of the chamber.