摘要:
Various embodiments provide a mold including a pyrolytic carbon film disposed at a surface of the mold. Various embodiments relate to using a low pressure chemical vapor deposition process (LPCVD) or using a physical vapor deposition (PVD) process in order to form a pyrolytic carbon film at a surface of a mold.
摘要:
A method for depositing an insulating layer includes performing a primary deposition over a sidewall of a feature by depositing a layer of silicate glass using a silicon source at a first flow rate and a dopant source at a second flow rate. A ratio of the flow of the dopant source to the flow of the silicon source is a first ratio. The method further includes performing a secondary deposition over the sidewall of a feature by increasing the flow of the silicon source relative to the flow of the dopant source. The ratio of the flow of the dopant source to the flow of the silicon source is a second ratio lower than the first ratio, and stopping the flow of the silicon source after performing the secondary deposition. A reflow process is performed after stopping the flow. A variation in thickness of the layer of silicate glass over the sidewall of a feature after the reflow process is between 1% to 20%.
摘要:
A method for depositing an insulating layer includes performing a primary deposition over a sidewall of a feature by depositing a layer of silicate glass using a silicon source at a first flow rate and a dopant source at a second flow rate. A ratio of the flow of the dopant source to the flow of the silicon source is a first ratio. The method further includes performing a secondary deposition over the sidewall of a feature by increasing the flow of the silicon source relative to the flow of the dopant source. The ratio of the flow of the dopant source to the flow of the silicon source is a second ratio lower than the first ratio, and stopping the flow of the silicon source after performing the secondary deposition. A reflow process is performed after stopping the flow. A variation in thickness of the layer of silicate glass over the sidewall of a feature after the reflow process is between 1% to 20%.
摘要:
Various embodiments provide a mold including a pyrolytic carbon film disposed at a surface of the mold. Various embodiments relate to using a low pressure chemical vapor deposition process (LPCVD) or using a physical vapor deposition (PVD) process in order to form a pyrolytic carbon film at a surface of a mold.
摘要:
The application refers to a semiconductor device including: a semiconductor body having a first surface and a second surface; an active region having at least one semiconductor cell configured to conduct a load current between the first surface and the second surface; an edge termination region separating the active region from a chip edge; and a first layer within at least a part of the edge termination region. The first layer includes silicon, nitrogen and hydrogen. In atomic numbers, a ratio of the silicon to the nitrogen is at least 3.3 to 4 in at least a portion of the first layer. At least the portion of the first layer includes at most 16 percent hydrogen in atomic numbers.
摘要:
A method for depositing an insulating layer includes performing a primary deposition over a sidewall of a feature by depositing a layer of silicate glass using a silicon source at a first flow rate and a dopant source at a second flow rate. The method further includes performing a secondary deposition over the sidewall of a feature by increasing the flow of the silicon source relative to the flow of the dopant source. A reflow process is performed after stopping the flow. A variation in thickness of the layer of silicate glass over the sidewall of a feature after the reflow process is between 1% to 20%.
摘要:
A method for depositing an insulating layer includes performing a primary deposition over a sidewall of a feature by depositing a layer of silicate glass using a silicon source at a first flow rate and a dopant source at a second flow rate. A ratio of the flow of the dopant source to the flow of the silicon source is a first ratio. The method further includes performing a secondary deposition over the sidewall of a feature by increasing the flow of the silicon source relative to the flow of the dopant source. The ratio of the flow of the dopant source to the flow of the silicon source is a second ratio lower than the first ratio, and stopping the flow of the silicon source after performing the secondary deposition. A reflow process is performed after stopping the flow. A variation in thickness of the layer of silicate glass over the sidewall of a feature after the reflow process is between 1% to 20%.