Abstract:
A processing system includes a processing core to execute a task and a memory management unit, coupled to the core. The memory management unit includes a storage unit to store a page table entry including one or more identifiers of memory frames, a protection key, and an access mode bit indicating whether the one or more memory frames are accessible according to a user mode or according to a supervisor mode, a first permission register including a plurality of fields, each field comprising a set of bits reflecting a set of memory access permissions under the user mode, and a second permission register storing a plurality of fields, each field comprising a set of bits reflecting a set of memory access permissions under the supervisor mode.
Abstract:
In one embodiment, a data mover accelerator is to receive, from a first agent having a first address space and a first process address space identifier (PASID) to identify the first address space, a first job descriptor comprising a second PASID selector to specify a second PASID to identify a second address space. In response to the first job descriptor, the data mover accelerator is to securely access the first address space and the second address space. Other embodiments are described and claimed.
Abstract:
Techniques and apparatus to manage access to accelerator-attached memory are described. In one embodiment, an apparatus to provide coherence bias for accessing accelerator memory may include at least one processor, a logic device communicatively coupled to the at least one processor, a logic device memory communicatively coupled to the logic device, and logic, at least a portion comprised in hardware, the logic to receive a request to access the logic device memory from the logic device, determine a bias mode associated with the request, and provide the logic device with access to the logic device memory via a device bias pathway responsive to the bias mode being a device bias mode. Other embodiments are described and claimed.
Abstract:
This disclosure is directed to a system for address mapping and translation protection. In one embodiment, processing circuitry may include a virtual machine manager (VMM) to control specific guest linear address (GLA) translations. Control may be implemented in a performance sensitive and secure manner, and may be capable of improving performance for critical linear address page walks over legacy operation by removing some or all of the cost of page walking extended page tables (EPTs) for critical mappings. Alone or in combination with the above, certain portions of a page table structure may be selectively made immutable by a VMM or early boot process using a sub-page policy (SPP). For example, SPP may enable non-volatile kernel and/or user space code and data virtual-to-physical memory mappings to be made immutable (e.g., non-writable) while allowing for modifications to non-protected portions of the OS paging structures and particularly the user space.
Abstract:
This disclosure is directed to a system for address mapping and translation protection. In one embodiment, processing circuitry may include a virtual machine manager (VMM) to control specific guest linear address (GLA) translations. Control may be implemented in a performance sensitive and secure manner, and may be capable of improving performance for critical linear address page walks over legacy operation by removing some or all of the cost of page walking extended page tables (EPTs) for critical mappings. Alone or in combination with the above, certain portions of a page table structure may be selectively made immutable by a VMM or early boot process using a sub-page policy (SPP). For example, SPP may enable non-volatile kernel and/or user space code and data virtual-to-physical memory mappings to be made immutable (e.g., non-writable) while allowing for modifications to non-protected portions of the OS paging structures and particularly the user space.