Abstract:
Described are embodiments of methods, apparatuses, and systems for PCIe tunneling across a multi-protocol I/O interconnect of a computer apparatus. A method for PCIe tunneling across the multi-protocol I/O interconnect may include establishing a first communication path between ports of a switching fabric of a multi-protocol I/O interconnect of a computer apparatus in response to a peripheral component interconnect express (PCIe) device being connected to the computer apparatus, and establishing a second communication path between the switching fabric and a PCIe controller. The method may further include routing, by the multi-protocol I/O interconnect, PCIe protocol packets of the PCIe device from the PCIe device to the PCIe controller over the first and second communication paths. Other embodiments may be described and claimed.
Abstract:
Described are embodiments of methods, apparatuses, and systems for PCIe tunneling across a multi-protocol I/O interconnect of a computer apparatus. A method for PCIe tunneling across the multi-protocol I/O interconnect may include establishing a first communication path between ports of a switching fabric of a multi-protocol I/O interconnect of a computer apparatus in response to a peripheral component interconnect express (PCIe) device being connected to the computer apparatus, and establishing a second communication path between the switching fabric and a PCIe controller. The method may further include routing, by the multi-protocol I/O interconnect, PCIe protocol packets of the PCIe device from the PCIe device to the PCIe controller over the first and second communication paths. Other embodiments may be described and claimed.
Abstract:
Described are embodiments of methods, apparatuses, and systems for PCIe tunneling across a multi-protocol I/O interconnect of a computer apparatus. A method for PCIe tunneling across the multi-protocol I/O interconnect may include establishing a first communication path between ports of a switching fabric of a multi-protocol I/O interconnect of a computer apparatus in response to a peripheral component interconnect express (PCIe) device being connected to the computer apparatus, and establishing a second communication path between the switching fabric and a PCIe controller. The method may further include routing, by the multi-protocol I/O interconnect, PCIe protocol packets of the PCIe device from the PCIe device to the PCIe controller over the first and second communication paths. Other embodiments may be described and claimed.
Abstract:
Described are embodiments of methods, apparatuses, and systems for PCIe tunneling across a multi-protocol I/O interconnect of a computer apparatus. A method for PCIe tunneling across the multi-protocol I/O interconnect may include establishing a first communication path between ports of a switching fabric of a multi-protocol I/O interconnect of a computer apparatus in response to a peripheral component interconnect express (PCIe) device being connected to the computer apparatus, and establishing a second communication path between the switching fabric and a PCIe controller. The method may further include routing, by the multi-protocol I/O interconnect, PCIe protocol packets of the PCIe device from the PCIe device to the PCIe controller over the first and second communication paths. Other embodiments may be described and claimed.
Abstract:
Aspects of the embodiments are directed to systems, methods, and devices for controlling power management entry. A PCIe root port controller can be configured to receive, at a downstream port of the root port controller, from an upstream switch port, a first power management entry request; reject the first power management entry request; transmit a negative acknowledgement message to the upstream switch port; initiate a timer for at least 20 microseconds; during the 20 microseconds, ignore any power management entry requests received from the upstream switch port; receive, after the expiration of the 20 microseconds, a subsequent power management entry request; accept the subsequent power management entry request; and transmit an acknowledgement of the acceptance of the subsequent power management entry request to the upstream switch port.
Abstract:
Aspects of the embodiments are directed to systems, methods, and devices for controlling power management entry. A PCIe root port controller can be configured to receive, at a downstream port of the root port controller, from an upstream switch port, a first power management entry request; reject the first power management entry request; transmit a negative acknowledgement message to the upstream switch port; initiate a timer for at least 20 microseconds; during the 20 microseconds, ignore any power management entry requests received from the upstream switch port; receive, after the expiration of the 20 microseconds, a subsequent power management entry request; accept the subsequent power management entry request; and transmit an acknowledgement of the acceptance of the subsequent power management entry request to the upstream switch port.
Abstract:
Described are embodiments of methods, apparatuses, and systems for PCIe tunneling across a multi-protocol I/O interconnect of a computer apparatus. A method for PCIe tunneling across the multi-protocol I/O interconnect may include establishing a first communication path between ports of a switching fabric of a multi-protocol I/O interconnect of a computer apparatus in response to a peripheral component interconnect express (PCIe) device being connected to the computer apparatus, and establishing a second communication path between the switching fabric and a PCIe controller. The method may further include routing, by the multi-protocol I/O interconnect, PCIe protocol packets of the PCIe device from the PCIe device to the PCIe controller over the first and second communication paths. Other embodiments may be described and claimed.
Abstract:
A flattening portal bridge (FPB) is provided to support addressing according to a first addressing scheme and a second, alternative addressing scheme. The FPB comprises a primary side and a secondary side, the primary side connects to a first set of devices addressed according to a first addressing scheme, and the secondary side connects to a second set of devices addressed according to a second addressing scheme. The first addressing scheme uses a unique bus number within a Bus/Device/Function (BDF) address space for each device in the first set of devices, and the second bus addressing scheme uses a unique bus-device number for each device in the second set of devices.
Abstract:
A flattening portal bridge (FPB) is provided to support addressing according to a first addressing scheme and a second, alternative addressing scheme. The FPB comprises a primary side and a secondary side, the primary side connects to a first set of devices addressed according to a first addressing scheme, and the secondary side connects to a second set of devices addressed according to a second addressing scheme. The first addressing scheme uses a unique bus number within a Bus/Device/Function (BDF) address space for each device in the first set of devices, and the second bus addressing scheme uses a unique bus-device number for each device in the second set of devices.
Abstract:
A flattening portal bridge (FPB) is provided to support addressing according to a first addressing scheme and a second, alternative addressing scheme. The FPB comprises a primary side and a secondary side, the primary side connects to a first set of devices addressed according to a first addressing scheme, and the secondary side connects to a second set of devices addressed according to a second addressing scheme. The first addressing scheme uses a unique bus number within a Bus/Device/Function (BDF) address space for each device in the first set of devices, and the second bus addressing scheme uses a unique bus-device number for each device in the second set of devices.