Abstract:
Apparatus and methods for a digital-to-time converter (DTC) are provided. In an example, a DTC can include a phase interpolator and a ring oscillator. The phase interpolator can be configured to receive digital representations of two or more distinct phase signals, and to interpolate the digital representations of the two or more distinct phase signals to provide an interpolated output phase signal. The ring oscillator can be configured to receive the interpolated phase signal, to lock on to a frequency and a phase of the interpolated output phase signal, and to provide a filtered phase signal.
Abstract:
A digital to analog converter circuit includes a plurality of digital to analog converter cells. The digital to analog converter circuit further includes a control circuit configured to control an operation of a digital to analog converter cell of the plurality of digital to analog converter cells based on a first phase component of a digital signal comprising information to be transmitted during a first time interval and based on a second phase component of the digital signal comprising information to be transmitted during a second time interval.
Abstract:
A digital to analog converter circuit includes a plurality of digital to analog converter cells. The digital to analog converter circuit further includes a control circuit configured to control an operation of a digital to analog converter cell of the plurality of digital to analog converter cells based on a first phase component of a digital signal comprising information to be transmitted during a first time interval and based on a second phase component of the digital signal comprising information to be transmitted during a second time interval.
Abstract:
A radio frequency digital-to-analog converter (RFDAC) circuit includes an RFDAC array circuit including an array of cells arranged into a plurality of segments. Each segment of the plurality of segments is configured to process input data signals. The RFDAC array circuit is configured to process an input data based on activating a set of segments of the plurality of segments, forming a set of active segments, and when the sign of the input data is changed, deactivate a partially active segment of the set of active segments and activate a sign change segment within the RFDAC array circuit. The sign change segment includes a segment within the plurality of segments of the RFDAC array circuit that is different from the set of active segments.