Abstract:
Systems and methods are provided for developing usable chip images in order to detect and screen defects or anomalies in a manufacturing environment. More specifically, a method is provided for manufacturing at least one wafer or chip. The method includes obtaining image data of the at least one wafer or chip. The method further includes correcting the image data to remove normal variation within the image data. The method further includes comparing the corrected image data to image data for at least one other wafer or chip to determine whether the corrected image data for the at least one wafer or chip shows a defect or anomaly beyond that of the normal variation. The method further includes placing the at least one wafer or chip into a category of fabrication based on the comparison.
Abstract:
According to embodiments of the present invention, a semiconductor substrate is formed on at least a portion of a surface of a semiconductor substrate. The emitting layer is excited for a first predetermined time period. A first luminescent intensity value of the emitting layer is determined. In response to exposing the semiconductor substrate and the emitting layer to a condition for a second predetermined time period, a second luminescent intensity value of the emitting layer is determined. A thermal profile of at least the portion of the surface of the semiconductor substrate is determined utilizing the first luminescent intensity value and the second luminescent intensity value of the emitting layer. The thermal profile at least reflects information about one or more of the condition and the semiconductor substrate subsequent to exposure to the condition.
Abstract:
Apparatus and methods incorporate magnetocaloric materials in integrated circuit chip-carrier structures for electronic packages. An integrated circuit chip is electrically connected to a substrate. A thermostabilization unit is physically connected to the integrated circuit chip and the substrate. The thermostabilization unit comprises a temperature detector and magnetocaloric material on the integrated circuit chip. The integrated circuit structure includes a magnetic field generator operatively connected to the temperature detector. The magnetic field generator generates a magnetic field of variable intensity responsive to changes in temperature detected by the temperature detector.
Abstract:
A method for fabrication of a lid for a microelectronic device is described, wherein the microelectronic device comprises of a die and a laminate. A gel is formed having a coefficient of thermal expansion (CTE) within a threshold percentage value of either a CTE of the die or a CTE of the laminate of the microelectronics device. A metal piece is inserted into the gel to form a lid.
Abstract:
Apparatus and methods incorporate magnetocaloric materials in integrated circuit chip-carrier structures for electronic packages. An integrated circuit chip is electrically connected to a substrate. A thermostabilization unit is physically connected to the integrated circuit chip and the substrate. The thermostabilization unit comprises a temperature detector and magnetocaloric material on the integrated circuit chip. The integrated circuit structure includes a magnetic field generator operatively connected to the temperature detector. The magnetic field generator generates a magnetic field of variable intensity responsive to changes in temperature detected by the temperature detector.