Abstract:
A chip carrier socket (2, 102) has a latching chip (30, 130) which extends across a recess (10, 110) of the chip carrier socket (2, 102) to maintain a chip carrier (22, 122) positioned in the recess (10, 110). The latching chip (30, 130) is mounted to the chip carrier socket (2, 102) in a manner which allows the latching chip (30, 130) to move between an open and a closed position. The latching chip (30, 130) is configured to cooperate with the chip carrier socket (2, 102) such that the latching chip (30, 130) is prevented from being accidentally removed from the chip carrier socket (2, 102) during the operation thereof, thereby eliminating the possibility of the latching chip (30, 130) making electrical contact with other circuitry provided in the area. An overstress member (170) is provided on the latching clip (130) to insure that the latching chip will be reliable over many cycles.
Abstract:
A connector (28) for use with a printed circuit board (26) and adaptable for single or double sided use as a signal launcher or feed-through, respectively. The connector includes an outer sleeve element (58) and a center contact element (46) which has a support portion (54) extending through an aperture (40) in the printed circuit board. The distal end (68) of the contact element (46) is secured by interference fit with a locking ring (72) on the other side of the circuit board.
Abstract:
Connector for a substrate such as an IC chip carrier comprises a housing assembly which in turn comprises a housing frame and a plurality of contact modules on the frame. Each module has a group of contact members therein. The contact members are located in predetermined positions in the frame and within predetermined dimensional tolerances. The housing frame and the substrate have substrate locating means for locating the substrate so that contact pads on the substrate will be in registry with the contact positions. Module locating means are also provided for locating the modules in the frame so that the contact members in the modules will be located in the predetermined positions. Each module has its own locating means which is directly related to the substrate locating means. The contact members in each module are thereby located within cumulative dimensional tolerances which are limited to the respective modules and are not cumulative beyond the individual modules.
Abstract:
Hermaphroditic electrical connector comprises a dielectric housing having terminals therein with resilient contact tongues and shunt means fixed to a dielectric carrier which moves relative to housing in response to mating with a like connector as tongues engage respective like tongues. The shunt means engage portions of the terminals remote from the contact tongues to electrically connect alternate terminals when the connector is in an unmated condition, the shunt means being in unmated relation with the terminals when the connector is mated.
Abstract:
A miniature circuit board edge connector having a very short electrical contact path is taught. Briefly stated, an insulative housing has contained therein a resiliently flexible and electrically conductive contact. A camming device is disposed in the housing and impinges upon the contact and through lateral motion of the cam, urges the contact vertically downward so as to cause downward and outward movement of a portion of the contact with respect to the housing which thereby comes in contact with an electrically conductive path on a daughter board which is adjacent thereto. A portion of the contact is in slidable electrical communication with a conductive post which is mounted in the base of the connector assembly and attached to a mother circuit board. The electrical path between the daughter board circuit board and the mother board conductive post through the contact is very short and in a slightly arcuate manner and minimizes inductive, capacitive and propagation delay effects.
Abstract:
A circuit board (12) and electrical connector (10) mounted to an edge (18) thereof is disclosed. The circuit board (12) includes an edge (18) and two major surfaces (14, 16) extending therefrom having circuitry (20). Plated through holes (24) are arranged adjacent the edge and are interconnected to circuitry on the circuit board. Each plated through hole (24) is associated with an opening such as a slot (26) or partial slot (27) that is formed in the edge (18) of the board so that it intersects the hole. The posts (32) of the connector (10) extend into the openings (26, 27) preferably in interference fit therewith whereafter soldering completes the electrical connections of the posts to the through holes.
Abstract:
A miniature socket (10) for electrically interconnecting contact pads on a bare integrated circuit chip (16) to circuit pads (64) on a substrate (18) is disclosed. The socket includes a housing (12) and contact elements (14) having a diameter of about 0.003 inches. The housing (12) includes a recess (28) on one surface (30) for receiving the circuit chip (16) and cavities (44) on an opposite surface (38) for receiving the contact elements (14) and passages (56) leading to the recess (28) from the cavities (44) for receiving the pin sections (80) on the elements (14). Methods of forming a gold tip (84) on the pin sections (80) and for providing cavities (44) and passages (56) in the housing (12) are also disclosed.
Abstract:
An electrical connector for surface mounting to a printed circuit board has circuit board mating legs of terminals which extend from a housing of the connector. An alignment member cooperates with the mating legs of the terminals to maintain the mating legs in position relative to each other and relative to the housing, thereby facilitating the close center-line spacing of the terminals.
Abstract:
An electrical socket (10) for leadless electronic devices has been disclosed. The socket (10) includes a film-circuit member (16) having circuits (66) on a dielectric base (64) with inner ends (68) for electrically engaging conductive pads on the electronic device and outer ends (74) for being electrically attached to circuits on a substrate. The film-circuit member (16) rests on a support plate (18) positioned in a cavity (42) in a lower housing (20) and is overlaid by an upper housing (12) having an opening (24) for receiving an electronic device.
Abstract:
A connector (80) for electrically interconnecting a semi-conductor device (92) to a substrate (86) is disclosed. The connector (80) includes a housing (50) having parallel channels (64) for receiving the devices (92) and contact elements (10) with cantilevered spring arms (18) for electrically engaging the devices (92) and a base (12) having an edge (26) for electrically engaging a circuit (84) on the substrate (86).