摘要:
The oligomerization of ethylene using a chromium catalyst having a heteroatomic ligand may be used to provide oligomerization products that are selective towards hexene and/or octene. However, such processes also typically produce some polymer as an undesirable by product. The present invention is directed towards improvements in the selective oligomerization of ethylene.
摘要:
Ethylene is selectively oligomerized in a continuously stirred tank reactor (CSTR) that is preferably operated in an isothermal manner using a chromium catalyst. The undesired formation of by-product polyethylene is mitigated by contacting the ethylene with hydrogen prior to adding the ethylene to the reactor and feeding the ethylene and hydrogen via a common feed port.
摘要:
The oligomerization of ethylene using a chromium catalyst and an aluminoxane activator is well known. The undesired formation of polyethylene as a by-product is also known to occur during prior oligomerization processes. We have discovered that the use of an aluminoxane that is prepared by non-hydrolytic means provides a highly productive activator (co-catalyst) for ethylene oligomerization and mitigates the undesired formation of by-product polyethylene.
摘要:
The oligomerization of ethylene using a chromium catalyst having a bridged diphosphine ligand can produce a selective product distribution (to predominantly hexene or predominantly octene/hexene) when activated with an aluminoxane. The oligomerization reaction also produces polymer by product—particularly when the aluminoxane is provided in a non-aromatic solvent. The present invention mitigates this problem.
摘要:
This invention enables the “bulk” oligomerization of ethylene (i.e. the oligomerization of ethylene in the presence of the oligomer product) using a catalyst system comprising 1) a very low concentration of a chromium catalyst and 2) a three part activator. The chromium catalyst contains a diphosphine ligand, preferably a so called P—N—P ligand. The activator includes an aluminoxane, trimethyl aluminum, and triethyl aluminum.
摘要:
The oligomerization of ethylene using a chromium catalyst having a phosphorus-nitrogen-phosphorus (“P—N—P”) ligand is typically activated with an aluminoxane. The addition of an alkyl zinc, particularly diethyl zinc, has been fund to improve the productivity of certain oligomerization reactions. In particular, the addition of diethyl zinc to an oligomerization reaction that is activated by methylaluminoxane (MAO) improves the productivity of the reaction.
摘要:
A continuous flow process for the oligomerization of ethylene using a chromium catalyst having a phosphorus-nitrogen-phosphorus (“P—N—P”) ligand provides high selectivity to the desired tetramer (1-octene) with reduced production of coproduct C10+ oligomers. Prior art processes that maximize catalyst activity have provided comparatively poor product selectivity. In particular, the production of larger amounts of C10+ oligomers have been observed under conditions that maximize activity. The present process resolves this problem through the use of a combination of low catalyst concentration and by limiting the octene concentration in the reactor.
摘要:
A catalyst system comprises 1) a group 4 organometallic catalyst and 2) an activator comprising a solid zirconium acid component and a metal alkyl. The catalyst system is inexpensive and is highly active for the polymerization of olefins. Preferred organometallic catalysts contain a cyclopentadienyl ligand, a phosphinimine ligand and or a ketimide ligand.
摘要:
Barrier films are prepared from a blend of two high density polyethylene blend components and a high performance organic nucleating agent. The two high density polyethylene blend components have substantially different melt indices. Large reductions in the moisture vapor transmission rate of the film are observed in the presence of the nucleating agent when the melt indices of the two blend components have a ratio of greater than 10/1. The resulting barrier films are suitable for the preparation of packaging for dry foods such as crackers and breakfast cereals.
摘要:
A highly active, supported phosphinimine catalyst is fed to a gas phase reactor as a slurry in a liquid hydrocarbon. Feeding the catalyst to a gas phase reactor in a viscous liquid hydrocarbon modifies catalyst initiation kinetics.