Abstract:
A method of manufacturing a light emitting device. The method includes: mounting a light emitting chip on a substrate; forming a transparent resin portion and a phosphor layer by using a liquid droplet discharging apparatus, the transparent resin portion being formed in a shape of a dome and covering the light emitting chip to fill an exterior thereof on the substrate, a phosphor layer containing phosphor and being formed on an exterior of the transparent resin portion close to at least a top side thereof; and forming a reflecting layer at a position exterior of the transparent resin portion and the phosphor layer close to the substrate.
Abstract:
It is made possible to form an interelectrode gap with high precision, without a decrease in the simplicity and convenience of the process to be carried out by an ink jet technique. A method for manufacturing an electronic device, includes: applying a water repellent agent onto a substrate by an ink jet technique to form a water repellent region on the substrate; dropping a solution containing a conductive ink material along edges of the water repellent region on the substrate by the ink jet technique to form a source electrode and a drain electrode; and forming a semiconductor layer to cover the water repellent region, the source electrode, and the drain electrode.
Abstract:
It is made possible to provide a thin film transistor having transistor characteristics that do not widely vary. A thin film transistor includes: a substrate; a pair of insulating layers formed at a distance from each other on the substrate; a source electrode formed on one of the insulating layers, and a drain electrode formed on the other one of the insulating layers; a semiconductor layer formed to cover the source electrode, the drain electrode, and the substrate; a gate insulating film formed on the semiconductor layer; and a gate electrode formed on the gate insulating film.
Abstract:
According to one embodiment, there is provided an organic light-emitting diode including an anode and a cathode which are arranged apart from each other, an emissive layer arranged between the anode and the cathode including a blue emissive layer located at the anode side and a green and red emissive layer located at the cathode side, the blue emissive layer containing a host material and a blue fluorescent dopant, and the green and red emissive layer containing a host material and a green phosphorescent dopant and/or a red phosphorescent dopant.