Optical fiber and method of making the same
    2.
    发明授权
    Optical fiber and method of making the same 有权
    光纤及其制作方法

    公开(公告)号:US06400878B1

    公开(公告)日:2002-06-04

    申请号:US09939742

    申请日:2001-08-28

    IPC分类号: G02B602

    摘要: An optical fiber preform 2 having a viscosity ratio R&eegr;=&eegr;0/&eegr;t of 2.5 or less between the core average viscosity &eegr;0 and the total average viscosity &eegr;t is prepared, and is drawn by a drawing furnace 11 so as to yield an optical fiber 3, which is then heated to a temperature within a predetermined range so as to be annealed by a heating furnace 21 disposed downstream the drawing furnace 11. Here, upon annealing in the heating furnace 21, the fictive temperature Tf within the optical fiber lowers, thereby reducing the Rayleigh scattering loss. At the same time, the viscosity ratio condition of R&eegr;≦2.5 restrains the stress from being concentrated into the core, thereby lowering the occurrence of structural asymmetry loss and the like. Hence, an optical fiber which can reduce the transmission loss caused by the Rayleigh scattering loss and the like as a whole, and a method of making the same can be obtained.

    摘要翻译: 准备在芯平均粘度eta0与总平均粘度etat之间具有2.5或更小的粘度比Reta = eta0 / etat的光纤预制棒2,并由拉丝炉11拉伸以产生光纤3, 然后将其加热到预定范围内的温度,以便通过设置在拉丝炉11下游的加热炉21进行退火。这里,在加热炉21中退火后,光纤内的假想温度Tf降低,从而降低 瑞利散射损失。 同时,Reta <= 2.5的粘度比条件限制了应力集中到芯中,从而降低了结构不对称损失的发生等。 因此,可以获得可以降低由瑞利散射损耗等引起的传输损耗等的整体的光纤及其制造方法。

    Process for thermal treatment of glass fiber preform
    7.
    发明授权
    Process for thermal treatment of glass fiber preform 失效
    玻璃纤维预制件热处理工艺

    公开(公告)号:US5306322A

    公开(公告)日:1994-04-26

    申请号:US924767

    申请日:1992-07-24

    摘要: The present invention providesa process for the dehydrating and purifying treatment by heating a porous glass preform for an optical fiber comprising passing the porous glass preform through a muffle tube having a SiC layer at least on its inner surface at a high temperature under an atmosphere comprising an inert gas and a silicon halogenide gas;a process for the fluorine-doping treatment by heating a porous glass preform for an optical fiber comprising passing a porous glass preform through a muffle tube having a SiC layer at least on its inner surface at a high temperature under an atmosphere comprising a fluorine compound gas and an inert gas; anda process for the vitrifying treatment by heating a porous glass preform for an optical fiber comprising passing the preform, which has been previously dehydrated and purified, through a muffle tube having a SiC layer at least on its inner surface at a high temperature under an atmosphere gas.

    摘要翻译: 本发明提供了一种通过加热用于光纤的多孔玻璃预制件进行脱水和净化处理的方法,包括使多孔玻璃预制件通过具有SiC层的马弗管至少在其内表面上在高温下在包括 惰性气体和卤化硅气体; 通过加热用于光纤的多孔玻璃预制件进行氟掺杂处理的方法,包括使多孔玻璃预制件通过具有SiC层的马弗管至少在其内表面上在高温下在包含氟化合物气体 和惰性气体; 以及通过加热用于光纤的多孔玻璃预制件进行玻璃化处理的方法,包括使预先脱水和净化的预成型体至少在其内表面上通过具有SiC层的马弗管在高温下 气氛气体。

    Air-tight sintering furnace for the production of a quartz preform
    9.
    发明授权
    Air-tight sintering furnace for the production of a quartz preform 失效
    用于生产QUARTZ预制件的空气烧结炉

    公开(公告)号:US5133796A

    公开(公告)日:1992-07-28

    申请号:US613878

    申请日:1990-11-28

    IPC分类号: C03B8/04 C03B20/00 C03B37/014

    摘要: This invention relates to a sintering furnace for the production of a quartz preform which can be used for carrying out dehydration, fluorine-addition and/or sintering of a porous quartz soot preform prepared by a flame hydrolysis method such as a VAD method or a OVD method, and in particular, to such a furnace in which joints in a long furnace muffle so long that fabricating it as open body is impossible can be maintained fully gas-tight, so that it is possible to prevent H.sub.2 O, O.sub.2 and other impurities in the air from entering the muffle from outside, and corrosive and poisonous gases in the muffle are prevented from leakage to outside the muffle. This sintering furnace has a muffle of high purity carbon, the inner wall and/or outer wall of which is coated with a gas-impermeable film, which muffle is a cylinder with an axis in the longitudinal direction and divided into a plurality of parts in the longitudinal direction, the parts each having the upper and lower ends finished so as to be flat and abutting adjacent parts sealed by a carbon gasket between them, and further has an air cylinder for pressing the parts together in the axial direction with a uniform force around the circumference of the muffle.

    摘要翻译: PCT No.PCT / JP90 / 00418 Sec。 371日期1990年11月28日 102(e)1990年11月28日PCT PCT 1990年3月28日PCT公布。 出版物WO90 / 11973 1990年10月18日的日期。本发明涉及一种用于生产石英预制棒的烧结炉,其可用于对通过火焰水解法制备的多孔石英烟灰预制件进行脱水,加氟和/或烧结 作为VAD方法或OVD方法,特别是在这样一种炉子中,其中长炉膛中长度相等的接头不可能被保持为开放体,从而可以完全保持气密性,从而可以防止 空气中的H2O,O2和其他杂质从外部进入马弗炉,并且防止马弗炉中的腐蚀性和有毒气体泄漏到马弗炉外部。 该烧结炉具有高纯度碳的马弗管,其内壁和/或外壁涂有气体不可渗透膜,该马弗管是沿纵向轴线的圆筒,并分成多个部分 纵向方向,上下两端的部分被平坦化并邻接在它们之间的碳垫圈密封的相邻部分,并且还具有用于以均匀的力在轴向上将部件按压在一起的气缸 围绕马弗炉的圆周。

    Optical fiber coupler making apparatus made from zirconia and method
    10.
    发明授权
    Optical fiber coupler making apparatus made from zirconia and method 失效
    由氧化锆制成的光纤耦合器制造装置及方法

    公开(公告)号:US06543256B1

    公开(公告)日:2003-04-08

    申请号:US09590166

    申请日:2000-06-09

    IPC分类号: C03B37029

    摘要: In an optical fiber coupler making apparatus which makes an optical fiber coupler by thermally fusing a plurality of optical fibers together by use of a heater and then elongating thus thermally fused part, the heater comprises a heating element which is made of zirconia and which has a slit for containing the optical fibers. The inner face of the heating element is preferentially heated due to a characteristic of its material. Consequently, if optical fibers are contained in the fiber receiving slit, then they can be thermally fused at a sufficiently high temperature in a short period of time, whereby reducing mingling of impurities into the optical fiber coupler. Therefore, the heating element made of zirconia is effective as means for preventing impurities from mingling from the outside thereof. Also, performances of the heating element can be maintained over a long period of time even if the optical fibers are thermally fused at a high temperature. Further, the evaporation of impurities, which may adversely affect characteristics of the optical fiber coupler, hardly occurs from the heating element.

    摘要翻译: 在通过使用加热器将多根光纤热熔合在一起并随后拉伸这样的热熔融部分而制造光纤耦合器的光纤耦合器制造装置中,加热器包括由氧化锆制成的加热元件, 用于容纳光纤的狭缝。 由于其材料的特性,加热元件的内表面被优先加热。 因此,如果在光纤接收狭缝中包含光纤,则可以在短时间内以足够高的温度热熔融,从而减少杂质混入光纤耦合器中。 因此,由氧化锆制成的加热元件作为防止杂质从其外部混合的手段是有效的。 此外,即使光纤在高温下热熔融,也可以长时间保持加热元件的性能。 此外,可能不利地影响光纤耦合器的特性的杂质的蒸发几乎不会从加热元件发生。