Method for making buried circumferential electrode microcavity plasma device arrays, and electrical interconnects
    2.
    发明授权
    Method for making buried circumferential electrode microcavity plasma device arrays, and electrical interconnects 有权
    用于制造埋置的圆周电极微腔等离子体器件阵列和电互连的方法

    公开(公告)号:US08404558B2

    公开(公告)日:2013-03-26

    申请号:US13188712

    申请日:2011-07-22

    IPC分类号: H01L33/16 H01J17/04 H01J17/49

    CPC分类号: H01J11/18 G09F9/313

    摘要: In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes. The foil is anodized to form metal oxide. One or more self-patterned metal electrodes are automatically formed and buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity in a plane(s) transverse to the microcavity axis, and can be electrically isolated or connected. Preferred embodiments provide inexpensive microplasma device electrode structures and a fabrication method for realizing microplasma arrays that are lightweight and scalable to large areas. Electrodes buried in metal oxide and complex patterns of electrodes can also be formed without reference to microplasma devices—that is, for general electrical circuitry.

    摘要翻译: 在优选的形成实施方案中,获得或形成有微孔的金属箔或膜。 箔被阳极化以形成金属氧化物。 自动形成一个或多个自图形金属电极并将其埋在通过阳极氧化处理产生的金属氧化物中。 电极在横截于微腔轴的平面中围绕每个微腔的封闭圆周形成,并且可以电隔离或连接。 优选实施例提供廉价的微型器件电极结构和用于实现轻量级并且可扩展到大面积的微等离子体阵列的制造方法。 掩埋在金属氧化物中的电极和电极的复杂图案也可以形成,而不参考微等离子体装置,即用于一般的电路。

    Buried circumferential electrode microcavity plasma device arrays, electrical interconnects, and formation method
    3.
    发明授权
    Buried circumferential electrode microcavity plasma device arrays, electrical interconnects, and formation method 有权
    埋置圆周电极微腔等离子体器件阵列,电气互连和形成方法

    公开(公告)号:US08004017B2

    公开(公告)日:2011-08-23

    申请号:US11880698

    申请日:2007-07-24

    IPC分类号: H01J17/04 H01J17/49

    CPC分类号: H01J11/18 G09F9/313

    摘要: A preferred embodiment microcavity plasma device array of the invention includes a plurality of first metal circumferential metal electrodes that surround microcavities in the device. The first circumferential electrodes are buried in a metal oxide layer and surround the microcavities in a plane transverse to the microcavity axis, while being protected from plasma in the microcavities by the metal oxide. In embodiments of the invention, the circumferential electrodes can be connected in patterns. A second electrode(s) is arranged so as to be isolated from said first electrodes by said first metal oxide layer. In some embodiments, the second electrode(s) is in a second layer, and in other embodiments the second electrode(s) is also within the first metal oxide layer. A containing layer, e.g., a thin layer of glass, quartz, or plastic, seals the discharge medium (plasma) into the microcavities. In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes. The foil is anodized to form metal oxide. One or more self-patterned metal electrodes are automatically formed and buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity in a plane(s) transverse to the microcavity axis, and can be electrically isolated or connected. Preferred embodiments provide inexpensive microplasma device electrode structures and a fabrication method for realizing microplasma arrays that are lightweight and scalable to large areas. Electrodes buried in metal oxide and complex patterns of electrodes can also be formed without reference to microplasma devices—that is, for general electrical circuitry.

    摘要翻译: 本发明的优选实施例微腔等离子体器件阵列包括围绕器件中的微腔的多个第一金属周向金属电极。 第一圆周电极被埋在金属氧化物层中,并且在垂直于微腔轴线的平面中围绕微腔,同时通过金属氧化物保护微腔中的等离子体。 在本发明的实施例中,圆周电极可以以图案连接。 第二电极被布置成通过所述第一金属氧化物层与所述第一电极隔离。 在一些实施例中,第二电极处于第二层,在其它实施例中,第二电极也在第一金属氧化物层内。 含有层,例如玻璃,石英或塑料的薄层,将放电介质(等离子体)密封成微腔。 在优选的形成实施方案中,获得或形成有微孔的金属箔或膜。 箔被阳极化以形成金属氧化物。 自动形成一个或多个自图形金属电极并将其埋在通过阳极氧化处理产生的金属氧化物中。 电极在横截于微腔轴的平面中围绕每个微腔的封闭圆周形成,并且可以电隔离或连接。 优选实施例提供廉价的微型器件电极结构和用于实现轻量级并且可扩展到大面积的微等离子体阵列的制造方法。 掩埋在金属氧化物中的电极和电极的复杂图案也可以形成,而不参考微等离子体装置,即用于一般的电路。

    MICROCAVITY AND MICROCHANNEL PLASMA DEVICE ARRAYS IN A SINGLE, UNITARY SHEET
    4.
    发明申请
    MICROCAVITY AND MICROCHANNEL PLASMA DEVICE ARRAYS IN A SINGLE, UNITARY SHEET 有权
    微阵列和微通道等离子体装置阵列

    公开(公告)号:US20110181169A1

    公开(公告)日:2011-07-28

    申请号:US12991237

    申请日:2009-05-14

    IPC分类号: H05H1/24 C25D11/02

    摘要: An array of microcavity plasma devices is formed in a unitary sheet of oxide with embedded microcavities or microchannels and embedded metal driving electrodes isolated by oxide from the microcavities or microchannels and arranged so as to generate sustain a plasma in the embedded microcavities or microchannels upon application of time-varying voltage when a plasma medium is contained in the microcavities or microchannels.

    摘要翻译: 微腔等离子体装置的阵列形成在具有嵌入的微腔或微通道的一体的氧化物片和由微腔或微通道中的氧化物隔离的嵌入的金属驱动电极中,并且被布置成在施加了微腔或微通道时在嵌入的微腔或微通道中产生维持等离子体 当等离子体介质包含在微通道或微通道中时,具有时变电压。

    Phosphor coating for irregular surfaces and method for creating phosphor coatings

    公开(公告)号:US09659737B2

    公开(公告)日:2017-05-23

    申请号:US13183255

    申请日:2011-07-14

    摘要: Microstructured, irregular surfaces pose special challenges but coatings of the invention can uniformly coat irregular and microstructured surfaces with one or more thin layers of phosphor. Preferred embodiment coatings are used in microcavity plasma devices and the substrate is, for example, a device electrode with a patterned and microstructured dielectric surface. A method for forming a thin encapsulated phosphor coating of the invention applies a uniform paste of metal or polymer layer to the substrate. In another embodiment, a low temperature melting point metal is deposited on the substrate. Polymer particles are deposited on a metal layer, or a mixture of a phosphor particles and a solvent are deposited onto the uniform glass, metal or polymer layer. Sequential soft and hard baking with temperatures controlled to drive off the solvent will then soften or melt the lowest melting point constituents of the glass, metal or polymer layer, partially or fully embed the phosphor particles into glass, polymer, or metal layers, which partially or fully encapsulate the phosphor particles and/or serve to anchor the particles to a surface.

    PHOSPHOR COATING FOR IRREGULAR SURFACES AND METHOD FOR CREATING PHOSPHOR COATINGS
    6.
    发明申请
    PHOSPHOR COATING FOR IRREGULAR SURFACES AND METHOD FOR CREATING PHOSPHOR COATINGS 有权
    用于非正式表面的磷光涂料和创建磷酸盐涂层的方法

    公开(公告)号:US20120025696A1

    公开(公告)日:2012-02-02

    申请号:US13183255

    申请日:2011-07-14

    摘要: Microstructured, irregular surfaces pose special challenges but coatings of the invention can uniformly coat irregular and microstructured surfaces with one or more thin layers of phosphor. Preferred embodiment coatings are used in microcavity plasma devices and the substrate is, for example, a device electrode with a patterned and microstructured dielectric surface. A method for forming a thin encapsulated phosphor coating of the invention applies a uniform paste of metal or polymer layer to the substrate. In another embodiment, a low temperature melting point metal is deposited on the substrate. Polymer particles are deposited on a metal layer, or a mixture of a phosphor particles and a solvent are deposited onto the uniform glass, metal or polymer layer. Sequential soft and hard baking with temperatures controlled to drive off the solvent will then soften or melt the lowest melting point constituents of the glass, metal or polymer layer, partially or fully embed the phosphor particles into glass, polymer, or metal layers, which partially or fully encapsulate the phosphor particles and/or serve to anchor the particles to a surface.

    摘要翻译: 微结构化的不规则表面构成特殊挑战,但是本发明的涂层可以用一层或多层磷光体均匀地涂覆不规则和微结构化的表面。 优选的实施方案涂层用于微腔等离子体装置,并且衬底是例如具有图案化和微结构化电介质表面的器件电极。 用于形成本发明的薄封装磷光体涂层的方法将均匀的金属或聚合物层糊料施加到基底上。 在另一个实施方案中,低温熔点金属沉积在基底上。 聚合物颗粒沉积在金属层上,或者将荧光体颗粒和溶剂的混合物沉积在均匀的玻璃,金属或聚合物层上。 随后温度控制以驱除溶剂的顺序软和硬烘烤将使玻璃,金属或聚合物层的最低熔点成分软化或熔化,部分或完全将磷光体颗粒嵌入玻璃,聚合物或金属层中,部分 或完全包封荧光体颗粒和/或用于将颗粒锚定到表面。

    METHOD FOR MAKING BURIED CIRCUMFERENTIAL ELECTRODE MICROCAVITY PLASMA DEVICE ARRAYS, AND ELECTRICAL INTERCONNECTS
    7.
    发明申请
    METHOD FOR MAKING BURIED CIRCUMFERENTIAL ELECTRODE MICROCAVITY PLASMA DEVICE ARRAYS, AND ELECTRICAL INTERCONNECTS 有权
    烧结电路微电子等离子体装置阵列和电气互连的方法

    公开(公告)号:US20110275272A1

    公开(公告)日:2011-11-10

    申请号:US13188712

    申请日:2011-07-22

    IPC分类号: H01J9/02

    CPC分类号: H01J11/18 G09F9/313

    摘要: In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes. The foil is anodized to form metal oxide. One or more self-patterned metal electrodes are automatically formed and buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity in a plane(s) transverse to the microcavity axis, and can be electrically isolated or connected. Preferred embodiments provide inexpensive microplasma device electrode structures and a fabrication method for realizing microplasma arrays that are lightweight and scalable to large areas. Electrodes buried in metal oxide and complex patterns of electrodes can also be formed without reference to microplasma devices—that is, for general electrical circuitry.

    摘要翻译: 在优选的形成实施方案中,获得或形成有微孔的金属箔或膜。 箔被阳极化以形成金属氧化物。 自动形成一个或多个自图形金属电极并将其埋在通过阳极氧化处理产生的金属氧化物中。 电极在横截于微腔轴的平面中围绕每个微腔的封闭圆周形成,并且可以电隔离或连接。 优选实施例提供廉价的微型器件电极结构和用于实现轻量级并且可扩展到大面积的微等离子体阵列的制造方法。 掩埋在金属氧化物中的电极和电极的复杂图案也可以形成,而不参考微等离子体装置,即用于一般的电路。

    Buried circumferential electrode microcavity plasma device arrays, electrical interconnects, and formation method
    8.
    发明申请
    Buried circumferential electrode microcavity plasma device arrays, electrical interconnects, and formation method 有权
    埋置圆周电极微腔等离子体器件阵列,电气互连和形成方法

    公开(公告)号:US20080185579A1

    公开(公告)日:2008-08-07

    申请号:US11880698

    申请日:2007-07-24

    IPC分类号: H01L29/10 H01L21/00

    CPC分类号: H01J11/18 G09F9/313

    摘要: A preferred embodiment microcavity plasma device array of the invention includes a plurality of first metal circumferential metal electrodes that surround microcavities in the device. The first circumferential electrodes are buried in a metal oxide layer and surround the microcavities in a plane transverse to the microcavity axis, while being protected from plasma in the microcavities by the metal oxide. In embodiments of the invention, the circumferential electrodes can be connected in patterns. A second electrode(s) is arranged so as to be isolated from said first electrodes by said first metal oxide layer. In some embodiments, the second electrode(s) is in a second layer, and in other embodiments the second electrode(s) is also within the first metal oxide layer. A containing layer, e.g., a thin layer of glass, quartz, or plastic, seals the discharge medium (plasma) into the microcavities. In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes. The foil is anodized to form metal oxide. One or more self-patterned metal electrodes are automatically formed and buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity in a plane(s) transverse to the microcavity axis, and can be electrically isolated or connected. Preferred embodiments provide inexpensive microplasma device electrode structures and a fabrication method for realizing microplasma arrays that are lightweight and scalable to large areas. Electrodes buried in metal oxide and complex patterns of electrodes can also be formed without reference to microplasma devices—that is, for general electrical circuitry.

    摘要翻译: 本发明的优选实施例微腔等离子体器件阵列包括围绕器件中的微腔的多个第一金属周向金属电极。 第一圆周电极被埋在金属氧化物层中,并且在垂直于微腔轴线的平面中围绕微腔,同时通过金属氧化物保护微腔中的等离子体。 在本发明的实施例中,圆周电极可以以图案连接。 第二电极被布置成通过所述第一金属氧化物层与所述第一电极隔离。 在一些实施例中,第二电极处于第二层,在其它实施例中,第二电极也在第一金属氧化物层内。 含有层,例如玻璃,石英或塑料的薄层,将放电介质(等离子体)密封成微腔。 在优选的形成实施方案中,获得或形成有微孔的金属箔或膜。 箔被阳极化以形成金属氧化物。 自动形成一个或多个自图形金属电极并将其埋在通过阳极氧化处理产生的金属氧化物中。 电极在横截于微腔轴的平面中围绕每个微腔的封闭圆周形成,并且可以电隔离或连接。 优选实施例提供廉价的微型器件电极结构和用于实现轻量级并且可扩展到大面积的微等离子体阵列的制造方法。 掩埋在金属氧化物中的电极和电极的复杂图案也可以形成,而不参考微等离子体装置,即用于一般的电路。

    Apparatus and method for recognizing an image
    9.
    发明授权
    Apparatus and method for recognizing an image 有权
    用于识别图像的装置和方法

    公开(公告)号:US07715632B2

    公开(公告)日:2010-05-11

    申请号:US11249092

    申请日:2005-10-12

    IPC分类号: G06K9/46 G06K9/66 G06K9/62

    CPC分类号: G06K9/00248

    摘要: Disclosed are an apparatus and a method for recognizing a specific subject from a still image or a moving image at a high speed. An object of the apparatus and the method is to reduce the amount of information required for image recognition. One feature vector value is extracted by using one feature template for dividing an image into a plurality of areas, and learning and image recognition is performed with respect to a subject to be recognized in the image using the extracted feature vector value.

    摘要翻译: 公开了一种用于从静止图像或运动图像高速识别特定被摄体的装置和方法。 该装置和方法的目的是减少图像识别所需的信息量。 通过使用一个特征模板将图像分割成多个区域来提取一个特征向量值,并且使用所提取的特征向量值对于要在图像中识别的对象执行学习和图像识别。

    JELLY-ROLL TYPE ELECTRODE ASSEMBLY AND SECONDARY BATTERY INCLUDING THE SAME
    10.
    发明申请
    JELLY-ROLL TYPE ELECTRODE ASSEMBLY AND SECONDARY BATTERY INCLUDING THE SAME 有权
    JELLY-ROLL型电极组件及其二次电池

    公开(公告)号:US20090297931A1

    公开(公告)日:2009-12-03

    申请号:US12536782

    申请日:2009-08-06

    IPC分类号: H01M6/10

    摘要: An electrode assembly including a first electrode strip having a first electrode collector coated with at least a first electrode active material, an exposed portion of the first electrode collector attached with a first electrode tab; a second electrode strip having a second electrode collector coated with at least a second electrode active material and is rolled together with the first electrode strip, an exposed portion of the second electrode collector is attached with a second electrode tab; and at least one inter-electrode strip separator is positioned between the first and second electrode strips, wherein at least one sheet of protective separator, which is extended from the inter-electrode strip separator, is further positioned on a side of the first electrode strip attached with the first electrode tab.

    摘要翻译: 一种电极组件,包括具有涂覆有至少第一电极活性材料的第一电极集电体的第一电极条,所述第一电极集电体的暴露部分附着有第一电极接线片; 第二电极带,具有涂覆有至少第二电极活性材料的第二电极集流体,并与第一电极带一起卷绕,第二电极集电体的暴露部分附着有第二电极片; 并且至少一个电极间带状分离器位于第一和第二电极条之间,其中从电极间隔离带延伸的至少一个保护隔离片进一步定位在第一电极条的一侧 附有第一电极片。