Abstract:
Start-up of an internal combustion engine comprises maintaining one or more engine valves in an engine cylinder in a continuously open state for more than one engine cycle during engine cranking. When it is determined that an engine parameter or transmission oil pressure has reached a predetermined value, maintenance of the one or more engine valves in the continuously open state is discontinued and fuel is subsequently provided to the engine cylinder for engine start-up. In various embodiments, the engine parameter may comprise an engine temperature parameter, an engine pressure parameter or an engine electrical parameter.
Abstract:
Systems and methods for actuating engine valves for positive power and engine braking operation are disclosed. The systems may include a self-lashing hydraulic piston slidably disposed in a fixed or rocker arm housing. The hydraulic piston may have an internal cavity in which a motion absorbing piston is disposed. A hydraulic fluid source may communicate with the hydraulic piston bore. A check valve which may be incorporated in a control valve may controls hydraulic fluid supply from the hydraulic fluid source to the hydraulic piston to provide self-lashing operation of the valve actuation system.
Abstract:
Systems and methods for actuating engine valves are disclosed. The systems may include a rocker arm having an adjustable length push tube mounted to a first end and multiple contact surfaces for an engine valve bridge at a second end. An actuator piston assembly may be provided in the rocker arm between the first and second rocker arm ends. The actuator piston assembly is adapted to extend from the rocker arm under the influence of hydraulic pressure and actuate an inboard engine valve through the engine valve bridge when an actuator piston is locked into an extended position.
Abstract:
Engine valve actuation systems and methods used to decompress an engine cylinder during engine start-up, shut-down, and for bleeder braking are disclosed. An exemplary system may include a rocker arm pivotally mounted on a rocker shaft, and a structure mounted adjacent to the rocker arm in a fixed position relative to the rocker arm. A latch piston may be slidably disposed between the rocker arm and the structure. The latch piston may be selectively extended to engage both the rocker arm and structure to limit the pivotal motion of the rocker arm and maintain the engine valves in an open condition.
Abstract:
Engine valve actuation systems and methods used to decompress an engine cylinder during engine start-up, shut-down, and for bleeder braking are disclosed. An exemplary system may include a rocker arm pivotally mounted on a rocker shaft, and a structure mounted adjacent to the rocker arm in a fixed position relative to the rocker arm. A latch piston may be slidably disposed between the rocker arm and the structure. The latch piston may be selectively extended to engage both the rocker arm and structure to limit the pivotal motion of the rocker arm and maintain the engine valves in an open condition.
Abstract:
Systems and methods for actuating engine valves are disclosed. The systems may include a rocker arm having an adjustable length push tube mounted to a first end and multiple contact surfaces for an engine valve bridge at a second end. An actuator piston assembly may be provided in the rocker arm between the first and second rocker arm ends. The actuator piston assembly is adapted to extend from the rocker arm under the influence of hydraulic pressure and actuate an inboard engine valve through the engine valve bridge when an actuator piston is locked into an extended position.