Abstract:
A valve drive of an internal combustion engine, which has a reciprocating poppet valve and a spring element which impinges the closed reciprocating poppet valve with force against the action of a valve seat. The force characteristics are substantially independent of the lift characteristics of the reciprocating poppet valve. The spring element is part of a snap-in locking device, which is stationarily mounted in the engine and surrounds the valve stem of the reciprocating poppet valve. The snap-in locking device has snap-in elements arranged in the power flux between the spring element and reciprocating poppet valve. The snap-in elements are supported in the direction of closure of the reciprocating poppet valve on a snap-in surface of the valve stem when the reciprocating poppet valve is closed and on a snap-in surface of the snap-in locking device when the reciprocating poppet valve is open.
Abstract:
A control apparatus for deactivating one of an intake valve and an exhaust valve in an internal combustion engine has a stepped sleeve slidably receiving a valve stem in a smaller diameter portion and a rocker piston in a larger diameter portion. Hydraulic fluid is retained in the sleeve and a clamping block is positioned adjacent the exterior of the larger diameter portion. When the clamping block is activated to engage the sleeve, the sleeve remains stationary as reciprocating movement of the rocker piston causes the valve to open and close. When the clamping block is not activated, the sleeve is free to move with the piston leaving the engine valve closed.
Abstract:
A method and a system for converting kinetic energy of a vehicle and part of energy supplied by its engine into energy of compressed air and using it to assist in vehicle propulsion later. A novel system of valves employing variable valve timing and valve deactivation is used to implement and control a two-way flow of compressed air between the engine and an air-reservoir where air-temperature control is maintained. During operation with compressed-air assist the engine operates both as an air-motor and as an internal combustion engine during each cycle in each cylinder. The engine can selectively and interchangeably operate either as a four-stroke or as a two-stroke internal combustion engine.
Abstract:
A variable intake valve for internal combustion engine comprising: A cam shaft, a valve with a valve head, a valve spring and a valve stem. A valve tappet is slidably extended into a sleeve guide between the cam shaft and the top of the upper end of the valve stem. The upper end of the valve stem is slidably extended into the valve tappet and a valve tappet spring is mounted on the top of the upper end of the valve stem. Also the upper end of the valve stem has a socket suitable to receive a locking pin. A locking mechanism mounted on the valve tappet comprises a locking pin controlled by a spring. The locking pin is slidably extended into the socket of the upper end of the valve stem when the locking mechanism is activated.
Abstract:
A valve control device for a cam-shaft controlled exhaust valve of a cylinder of a motor vehicle internal combustion engine with an exhaust cutoff brake wherein an actuator closes a throttle valve in the exhaust of the cylinder to initiate a braking operation, characterized in that a hydraulic valve clearance compensation element is arranged between the cam-shaft and the exhaust valve whereby an adjusting piston is guided in a cylindrical body and is loaded by a return spring and a control element is provided to retain the adjusting piston relative to cylindrical body during braking in the adjusted position respectively reached at the beginning of the braking operation wherein the control element acts upon the hydraulic valve clearance compensation element during braking operation with a force which exceeds or at least corresponds to the force of the return spring of the hydraulic valve clearance compensation element and counteracts the latter.
Abstract:
Engine valve actuation systems and methods used to decompress an engine cylinder during engine start-up, shut-down, and for bleeder braking are disclosed. An exemplary system may include a rocker arm pivotally mounted on a rocker shaft, and a structure mounted adjacent to the rocker arm in a fixed position relative to the rocker arm. A latch piston may be slidably disposed between the rocker arm and the structure. The latch piston may be selectively extended to engage both the rocker arm and structure to limit the pivotal motion of the rocker arm and maintain the engine valves in an open condition.
Abstract:
Engine valve actuation systems and methods used to decompress an engine cylinder during engine start-up, shut-down, and for bleeder braking are disclosed. An exemplary system may include a rocker arm pivotally mounted on a rocker shaft, and a structure mounted adjacent to the rocker arm in a fixed position relative to the rocker arm. A latch piston may be slidably disposed between the rocker arm and the structure. The latch piston may be selectively extended to engage both the rocker arm and structure to limit the pivotal motion of the rocker arm and maintain the engine valves in an open condition.
Abstract:
A variable valve driving apparatus includes a driving shaft including a first camshaft and a second camshaft coaxially disposed to the first camshaft, a driving cam including an opening cam disposed to the first camshaft and a closing cam disposed to the second camshaft, a phase control portion controlling relative phases between the first camshaft and the second camshaft and a valve opening portion opened by the opening cam and the closing cam.
Abstract:
A variable valve driving apparatus includes a driving shaft including a first camshaft and a second camshaft coaxially disposed to the first camshaft, a driving cam including an opening cam disposed to the first camshaft and a closing cam disposed to the second camshaft, a phase control portion controlling relative phases between the first camshaft and the second camshaft and a valve opening portion opened by the opening cam and the closing cam.
Abstract:
A valve control for a gas exchange valve of an internal combustion engine includes at least one spring element for preloading the valve in an end position and a fixing device for the releasable fixing of the valve. The spring element in a moveable insert, which by means of an actuation device is adjustable in actuation direction of the valve between an end position close to the valve disc and an end position far from the valve disc for adjusting a preload applied on the valve by the spring element.