摘要:
A visible pattern is obtained by modulating the digital sum value. Because the digital sum value modulation allows the choice of several different channel bits groups between DC control points, the selection of a group of channel bits resulting in a change of reflection. This creation of a visible pattern is highly suitable for Blueray as the parity preserving property of the channel code guarantees disparity inversion by the DC-control bit, which keeps the DSV excursions between hard limits. As a result only small DSV deliberate variations are required to produce a grating, which will not deteriorate the bit-detection margin of the optical disc.
摘要:
A visible pattern is obtained by modulating the digital sum value. Because the digital sum value modulation allows the choice of several different channel bits groups between DC control points, the selection of a group of channel bits resulting in a change of reflection. This creation of a visible pattern is highly suitable for Blueray as the parity preserving property of the channel code guarantees disparity inversion by the DC-control bit, which keeps the DSV excursions between hard limits. As a result only small DSV deliberate variations are required to produce a visual watermark, which will not deteriorate the bit-detection margin of the optical disc.
摘要:
A visible pattern is obtained by modulating the digital sum value. Because the digital sum value modulation allows the choice of several different channel bits groups between DC control points, the selection of a group of channel bits resulting in a change of reflection. This creation of a visible pattern is highly suitable for Blueray as the parity preserving property of the channel code guarantees disparity inversion by the DC-control bit, which keeps the DSV excursions between hard limits. As a result only small DSV deliberate variations are required to produce a grating, which will not deteriorate the bit-detection margin of the optical disc.
摘要:
A visible pattern is obtained by modulating the digital sum value. Because the digital sum value modulation allows the choice of several different channel bits groups between DC control points, the selection of a group of channel bits resulting in a change of reflection. This creation of a visible pattern is highly suitable for Blueray as the parity preserving property of the channel code guarantees disparity inversion by the DC-control bit, which keeps the DSV excursions between hard limits. As a result only small DSV deliberate variations are required to produce a visual watermark, which will not deteriorate the bit-detection margin of the optical disc.
摘要:
An apparatus generates outgoing data to be provided on an optical disk in a burst cutting area. The burst cutting area further comprises markings which cause a marking frequency spectrum when reading out the burst cutting area. The apparatus comprises a channel coder which receives processed data and supplies the outgoing data having an outgoing data frequency spectrum with suppressed DC-content. The apparatus further comprises a data processing device which generates the processed data to obtain an outgoing frequency spectrum wherein a frequency component causing interference with a low frequent component of the markings is suppressed or not present.
摘要:
The present invention is related to a biosensor system for the detection of particles comprising: a biosensor cartridge comprising a sensor surface, a biosensor magnet assembly on one side of the cartridge for generating a magnetic field effective at the cartridge and the sensor surface, the first biosensor magnet assembly comprising at least two magnetic sub-units separated by a gap, a first optical detection system for detecting the particles arranged at the same side of the cartridge as the magnet assembly, whereas the magnet assembly is designed in a way that the optical detection is accomplished through the gap of the magnet assembly.
摘要:
The invention relates to a format for storing information on an optical recording medium. According to said format the record carrier comprises a synchronization pattern, which synchronization pattern comprises an identifying part consisting of a bit sequence chosen from 100 101, 010 101, 101 001, 010 100 or 100 100.
摘要:
The invention provides a method for controlling actuation of label particles in a biosensor device, in particular a biosensor device using frustrated total internal reflection. By applying a predetermined actuation force on the label particles and determining the effect of the applied actuation force in a binding volume or surface of a sensor cartridge of the biosensor device, a feedback control of the actuation force is applied. Furthermore, a biosensor device is provided which is adapted for forming the method according to the invention.
摘要:
The present invention provides an FTIR system comprising a first light source emitting light of a first wavelength, a sample volume with an adjacent sensor surface, a detector for detecting light reflected at said sensor surface. The sensor surface is illuminated by said first light source fulfilling the condition of total internal reflection and generating an evanescent field with a decay length within the sample volume. The system further comprises means for changing the decay length of the evanescent field and means for correlating the detected signals with the change of the decay length of the evanescent field.
摘要:
The invention relates to a microelectronic sensor device for manipulating a sample in an exchangeable carrier (111), for example for optically detecting target particles (1) in a sample liquid that is provided in a sample chamber (2) of the carrier (111). The microelectronic sensor device comprises a number of n>1 magnetic field generators (141-143), e.g. electromagnetic coils, with which magnetic fields can be generated in a target region (110). A control unit (150) is provided that can determine and evaluate the mutual coupling or the self-inductance of the magnetic field generators and/or signals from magnetic field sensors attached to the carrier with respect to the presence and/or state of a carrier (111) in the target region (110). In this way, the control unit (150) can for example detect if the carrier (111) is correctly positioned in the sensor device and/or where a magnetically interactive substance (1, 120) is located.