摘要:
Method and device for smart power management of the sensor nodes within a wireless sensor network to achieve extremely low standby current and fast power-up time at the same time are provided. The method features a technique of centralized remote power-up scheme combined with local broadcasting power-up sequence to achieve fast power-up time and extended power-up coverage. It can manage the power-down sequence from a base-station to sensor nodes sequentially, while the power-up sequence broadcasts its power-up command from the base-station to all the sensor nodes within a sensor network. The device accepts same frequency band for both data communication and power-up message, and a RF switch separates receiving RF data and RF power-up message. The wireless power-up receiver is self-powered from power-up message and also generates power-up enable signal from it.
摘要:
A Wireless battery area network permits the wirelessly monitoring and controlling of individual batteries within large-scale battery applications. The system automatically configures its wireless nodes in the network and provides for the linking of a plurality of batteries (10) to a master battery management unit (M-BMU) (100) by establishing a wireless battery area network within a battery pack that include slave units (S-BMU) (210). The entire system may also be controlled by a top level battery management unit (T-BMU) (510). The system and method allows for the monitoring of voltage, current, temperature, or impedance of individual batteries and for the balancing or bypassing of a battery.
摘要:
A Wireless battery area network permits the wirelessly monitoring and controlling of individual batteries within large-scale battery applications. The system automatically configures its wireless nodes in the network and provides for the linking of a plurality of batteries (10) to a master battery management unit (M-BMU) (100) by establishing a wireless battery area network within a battery pack that include slave units (S-BMU) (210). The entire system may also be controlled by a top level battery management unit (T-BMU) (510). The system and method allows for the monitoring of voltage, current, temperature, or impedance of individual batteries and for the balancing or bypassing of a battery.
摘要:
Provided is a semiconductor chip. The semiconductor chip includes a semiconductor substrate including a main chip region and a scribe lane region surrounding the main chip region. An insulating layer is disposed over the semiconductor substrate. A guard ring is disposed in the insulating layer in the scribe lane region. The guard ring surrounds at least a portion of the main chip region. The guard ring has a brittleness greater than a brittleness of the insulating layer.
摘要:
An apparatus includes an electronic amplifier and an electrical feedback line, a plurality of electrical sources, and an electronic controller. The electrical feedback line connects an output of the electronic amplifier to an input thereof. The electrical sources connect to nodes on the electronic feedback line. The electronic controller is configured to adjust the electrical sources in a manner responsive to a current input to the electrical feedback line.
摘要:
An apparatus includes an electronic amplifier and an electrical feedback line, a plurality of electrical sources, and an electronic controller. The electrical feedback line connects an output of the electronic amplifier to an input thereof. The electrical sources connect to nodes on the electronic feedback line. The electronic controller is configured to adjust the electrical sources in a manner responsive to a current input to the electrical feedback line.
摘要:
One apparatus includes an array of current sources, a digital memory, and a calibration circuit. The digital memory is configured to store one set of digital calibration values for each of the current sources and to apply each stored set of digital calibration values to the corresponding current source to set the output current of the corresponding output current source. The calibration circuit is configured to update each set of digital calibration values in the memory in a manner that reduces mismatches between output currents of different ones of the current sources.
摘要:
Provided is a semiconductor chip. The semiconductor chip includes a semiconductor substrate including a main chip region and a scribe lane region surrounding the main chip region. An insulating layer is disposed over the semiconductor substrate. A guard ring is disposed in the insulating layer in the scribe lane region. The guard ring surrounds at least a portion of the main chip region. The guard ring has a brittleness greater than a brittleness of the insulating layer.
摘要:
In an inventive photonic analog-to-digital signal converter (ADC), multiple opto-electric sampling devices are employed to successively sample an analog signal input. Optical clock signals having the same frequency but different clock phases are used, which are associated with the opto-electric sampling devices, respectively. Each sampling device takes samples of the analog signal input in response to the optical clock signal associated therewith. The resulting samples are processed to produce quantized samples. The inventive ADC outputs a digital signal representing the quantized samples.
摘要:
One apparatus includes an array of current sources, a digital memory, and a calibration circuit. The digital memory is configured to store one set of digital calibration values for each of the current sources and to apply each stored set of digital calibration values to the corresponding current source to set the output current of the corresponding output current source. The calibration circuit is configured to update each set of digital calibration values in the memory in a manner that reduces mismatches between output currents of different ones of the current sources.