摘要:
A method of forming dielectric spacers including providing a substrate comprising a first region having a first plurality of gate structures and a second region having a second plurality of gate structures and at least one oxide containing material or a carbon containing material. Forming a nitride containing layer over the first region having a thickness that is less than the thickness of the nitride containing layer that is present in the second region. Forming dielectric spacers from the nitride containing layer on the first plurality the second plurality of gate structures. The at least one oxide containing material or carbon containing material accelerates etching in the second region so that the thickness of the dielectric spacers in the first region is substantially equal to the thickness of the dielectric spacers in the second region of the substrate.
摘要:
Disclosed are a system and a method of correcting systematic, design-based, parametric variations on integrated circuit chips to minimize circuit limited yield loss. Processing information and a map of a chip are stored. The processing information can indicate an impact, on a given device parameter, of changes in a value for a specification associated with a given process step. The map can indicate regional variations in the device parameter (e.g., threshold voltage). Based on the processing information and using the map as a guide, different values for the specification are determined, each to be applied in a different region of the integrated circuit chip during the process step in order to offset the mapped regional parametric variations. A process tool can then be selectively controlled to ensure that during chip manufacturing the process step is performed accordingly and, thereby to ensure that the regional parametric variations are minimized.
摘要:
Methods and structures for enhancing the homogeneity in a ratio of perimeter to surface area among heterogeneous features in different substrate regions. At least one shape on the substrate includes an added edge effective to reduce a difference in the perimeter-to-surface area ratio between the features in a first substrate region and features in a second substrate region. The improved homogeneity in the perimeter-to-surface area ratio reduces variations in a thickness of a conformal layer deposited across the features in the first and second substrate regions.
摘要:
A method for forming a plurality of variable linewidth spacers adjoining a plurality of uniformly spaced topographic features uses a conformal resist layer upon a spacer material layer located over the plurality of uniformly spaced topographic features. The conformal resist layer is differentially exposed and developed to provide a differential thickness resist layer that is used as a sacrificial mask when forming the variable linewidth spacers. A method for forming uniform linewidth spacers adjoining narrowly spaced topographic features and widely spaced topographic features over the same substrate uses a masked isotropic etching of a variable thickness spacer material layer to provide a more uniform partially etched spacer material layer, followed by an unmasked anisotropic etching of the partially etched spacer material layer. A related method for forming the uniform linewidth spacers uses a two-step anisotropic etch method that includes at least one masking process step.
摘要:
A method of forming dielectric spacers including providing a substrate comprising a first region having a first plurality of gate structures and a second region having a second plurality of gate structures and at least one oxide containing material or a carbon containing material. Forming a nitride containing layer over the first region having a thickness that is less than the thickness of the nitride containing layer that is present in the second region. Forming dielectric spacers from the nitride containing layer on the first plurality the second plurality of gate structures. The at least one oxide containing material or carbon containing material accelerates etching in the second region so that the thickness of the dielectric spacers in the first region is substantially equal to the thickness of the dielectric spacers in the second region of the substrate.
摘要:
Disclosed are a system and a method of correcting systematic, design-based, parametric variations on integrated circuit chips to minimize circuit limited yield loss. Processing information and a map of a chip are stored. The processing information can indicate an impact, on a given device parameter, of changes in a value for a specification associated with a given process step. The map can indicate regional variations in the device parameter (e.g., threshold voltage). Based on the processing information and using the map as a guide, different values for the specification are determined, each to be applied in a different region of the integrated circuit chip during the process step in order to offset the mapped regional parametric variations. A process tool can then be selectively controlled to ensure that during chip manufacturing the process step is performed accordingly and, thereby to ensure that the regional parametric variations are minimized.
摘要:
Methods and structures for enhancing the homogeneity in a ratio of perimeter to surface area among heterogeneous features in different substrate regions. At least one shape on the substrate includes an added edge effective to reduce a difference in the perimeter-to-surface area ratio between the features in a first substrate region and features in a second substrate region. The improved homogeneity in the perimeter-to-surface area ratio reduces variations in a thickness of a conformal layer deposited across the features in the first and second substrate regions.
摘要:
A test system for testing a multilayer 3-dimensional integrated circuit (IC), where two separate layers of IC circuits are temporarily connected in order to achieve functionality, includes a chip under test with a first portion of the 3-dimensional IC, and a test probe chip with a second portion of the 3-dimensional IC and micro-electrical-mechanical system (MEMS) switches that selectively complete functional circuits between the first portion of the 3-dimensional IC in a first IC layer to circuits within the second portion of the 3-dimensional IC in a second IC layer. The MEMS switches include tungsten (W) cone contacts, which make the selective electrical contacts between circuits of the chip under test and the test probe chip and which are formed using a template of graded borophosphosilicate glass (BPSG).
摘要:
A variable focal point lens includes a transparent tank, which comprises a transparent enclosure containing a transparent flexible membrane separating the inner volume of the transparent tank into an upper tank portion and a lower tank portion. The upper tank portion and the lower tank portion contain liquids having different indices of refraction. The transparent flexible membrane is electrostatically displaced to change the thicknesses of the first tank portion and the second tank portion in the path of the light, thereby shifting the focal point of the lens axially and/or laterally. The electrostatic displacement of the membrane may be effected by a fixed charge in the membrane and an array of enclosure-side conductive structures on the transparent enclosure, or an array of membrane-side conductive structures on the transparent membrane and an array of enclosure-side conductive structures.
摘要:
Disclosed herein are various methods and structures using contacts to create differential stresses on devices in an integrated circuit (IC) chip. An IC chip is disclosed having a p-type field effect transistor (PFET) and an n-type field effect transistor (NFET). One embodiment of this invention includes creating this differential stress by varying the deposition conditions for forming PFET and NFET contacts, for example, the temperature at which the fill materials are deposited, and the rate at which the fill materials are deposited. In another embodiment, the differential stress is created by filling the contacts with differing materials that will impart differential stress due to differing coefficient of thermal expansions. In another embodiment, the differential stress is created by including a silicide layer within the NFET contacts and/or the PFET contacts.