摘要:
Various techniques for queue management based on random early detection (RED) are disclosed herein. In particular, a method for generating a drop probability for an incoming packet in a device having a queue to buffer packets between segments of a network is provided. The method comprises determining, upon receipt of an incoming packet, a size of the queue and determining an error based at least in part on a difference between the queue size and a threshold. The method further comprises determining a drop probability for the incoming packet based at least in part on the error and a constant gain factor. The constant gain factor may be based at least in part on a linearized second order dynamic model of the network.
摘要:
An improved buffer management process is disclosed wherein the buffer is shared among a plurality of packet queues. The improved buffer management process comprises computing a common queue threshold value based upon the aggregate size of the plurality of packet queues and a predetermined buffer threshold value. The common queue threshold value is then used to manage the size of each of the plurality of packet queues and thereby manage the buffer.
摘要:
A technique for adaptively load balancing connections in multi-link trunks is disclosed. The present invention provides an adaptive load balancing algorithm that utilizes relative link quality metrics to adjust traffic distribution between links. Link quality metrics may include short-term averages of an observed packet drop rate for each member link in a bundle. The present invention may dynamically adjust the number of flows on each link in proportion to available bandwidth. In addition, link quality metrics may be equalized, such that no link is more lossy than the others.
摘要:
A technique for implementing an admission control scheme for data flows is disclosed. In one embodiment, the technique is realized by determining a current error value in response to a queue size in a packet buffer; generating a packet drop probability based at least in part on the current error value; receiving a data packet having a data type; and determining whether to reject or accept the received data packet at a queue based at least in part on the packet drop probability and a predetermined flow rejection threshold. In addition, the technique may involve determining whether a randomly generated number is less than or equal to the packet drop probability and determining whether a count variable is greater than or equal to an inter-drop interval.
摘要:
A system and method for synchronizing a local clock to a reference clock using a linear model of the error between the local clock and the reference clock is disclosed. In one embodiment, a direct smoothing process is used in conjunction with the linear model to estimate a frequency offset by which the frequency of an oscillator of the local clock is adjusted. Also disclosed herein is a phased-lock loop (PLL) adapted to synchronize a local clock with a reference clock using the direct smoothing process, as well as a system implementing the PLL for timing the playout of data received from a transmitter.
摘要:
A technique for managing a queue so as to distribute losses among different service classes is disclosed. In one embodiment, the technique is realized by classifying an incoming packet into one of a plurality of classes. Each class has an associated weighting factor. The system continuously monitors a queue size and determines an overall packet drop probability based on the actual queue size and a target queue size and calculates a target class drop probability based on the overall packet drop probability and the weighting factor. Finally, the system makes a comparison based on the target class drop probability and a selected value and decides whether to drop the incoming packet based on a result of the comparison. If losses are unavoidable in the system, the technique ensures that the losses will be distributed among the different service classes in inverse proportion to the service price of each class.
摘要:
In response to a network topology change, a clock root node calculates a new clock path for each affected node by building a clock source topology tree, and identifying from that tree a path to the network node from a clock source of higher or equal stratum relative to that network node. The root node then sends a network message to each node indicating the new path that the node should use. Each node receives the message and compares the new path with the existing path. If the paths are different then the node acquires the new path just received in the message. If the paths are the same then the node does nothing and discards the message.
摘要:
Algorithms and data structure are described for constructing and maintaining a clock distribution tree (“CDT”) for timing loop avoidance. The CDT algorithms and data structure allows a node to make an automated and unattended path switch to the most desirable clock source in the network. In response to a network topology change, a clock root node distributes new clock paths to all nodes in the network. In particular, the root node calculates a new clock path for each affected node by building a clock source topology tree, and identifying from that tree a path to the network node from a clock source of higher or equal stratum relative to that network node. The root node then sends a network message to each node indicating the new path that the node should use. Each node receives the message and compares the new path with the existing path. If the paths are different then the node acquires the new path just received in the message. If the paths are the same then the node does nothing and discards the message.
摘要:
A timestamp-based clock synchronization technique is employed for CES in packet networks. The technique is based on a double exponential filtering technique and a linear process model. The linear process model is used to describe the behavior of clock synchronization errors between a transmitter and a receiver. The technique is particularly suitable for clock synchronization in networks where the transmitter and receiver are not driven from a common timing reference but the receiver requires timing reference traceable to the transmitter clock.
摘要:
Network elements may be synchronized over an asynchronous network by implementing a master clock as an all digital PLL that includes a Digitally Controlled Frequency Selector (DCFS), the output frequency of which may be directly controlled through the input of a control word. The PLL causes the control word input to the master DCFS to be adjusted to cause the output of the master DCFS to lock onto a reference frequency. Information associated with the control word is transmitted from the master clock to the slave clocks which are also implemented as DCFSs. By using the transmitted information to recreate the master control word, the slaves may be made to assume the same state as the master DCFS without requiring the slaves to be implemented as PLLs. The DCFS may be formed as a digitally controlled oscillator (DCO) or as a Direct Digital Synthesizer (DDS).