摘要:
The invention is directed to methods of starting up reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The methods provide appropriate mechanisms of heating and loading the activated molecular sieves to protect against loss of catalytic activity that can occur due to contact with water molecules.
摘要:
The invention is directed to methods of shutting down reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The methods provide appropriate mechanisms of stopping feed to the reactor and unloading catalyst to protect against loss of catalytic activity that can occur due to contact with water molecules.
摘要:
The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
摘要:
This invention is directed to methods of converting oxygenates to olefin products. The methods provided include steps for protecting against deactivation of active molecular sieve catalysts during the conversion process. In particular, the invention provides for methods of regenerating coked catalyst to minimize catalyst deactivation due to contact with moisture.
摘要:
The invention relates to a conversion process for making olefin(s) using a molecular sieve catalyst composition. More specifically, the invention is directed to a process for converting a feedstock comprising an oxygenate in the presence of a molecular sieve catalyst composition, wherein the feedstock is free of or substantially free of metal salts.
摘要:
A method for maintaining the activity of silicoaluminophosphate (SAPO) molecular sieve catalyst particles during oxygenate to olefin conversion reactions. The SAPO catalyst particles are regenerated under targeted conditions in the presence of platinum to provide controlled, steady state regeneration while minimizing catalyst damage.
摘要:
This invention is directed to methods of converting oxygenates to olefin products. The methods provided include steps for protecting against deactivation of active molecular sieve catalysts during the conversion process. In particular, the invention provides for methods of regenerating coked catalyst to minimize catalyst deactivation due to contact with moisture.
摘要:
The invention is directed to methods of transfering catalyst particles into and within reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The transfer methods provide appropriate mechanisms for transporting catalyst into and within a reactor to protect against loss of catalytic activity that can occur due to contact with water molecules.
摘要:
A multi-stage gas-solids separator having at least 4 stages is configured so that the penultimate stage of separators is operated in an underflow condition. The underflow from the penultimate stage is used as the input flow for the final stage of separators. The multi-stage separator is preferably composed of cyclone separators, with the final two stages of separators housed in external disengaging vessels.
摘要:
This invention provides processes for transporting catalyst, preferably in an oxygenate to olefins reaction system. In one embodiment, an oxygenate contacts molecular sieve catalyst particles in a reactor under conditions effective to form an effluent stream comprising light olefins and forming coked catalyst particles. At least a portion of the coked catalyst particles are transported from the reactor or a device associated therewith to a catalyst regenerator through a conduit in a fluidized manner with a fluidizing medium comprising air and steam. At least a portion of the coked catalyst particles are regenerated in the catalyst regenerator to form regenerated catalyst particles, which are ultimately directed back to the reactor.