摘要:
The present invention provides a wire guide (20) suitable for use in a body vessel, such as a peripheral vessel. The wire guide comprises a core member (22) and a first coiled member (40), each having proximal and distal ends. In one embodiment, the core member comprises at least one recessed portion (36), wherein the proximal end of the first coiled member is seated at least partially within the recessed portion to form a substantially flush exterior surface with the core member. The wire guide further preferably comprises a second coiled member (50) having proximal and distal ends, wherein the second coiled member is disposed distal to the first coiled member. The distal end of the first coiled member may be partially intertwined with the proximal end of. the second coiled member. A shaping ribbon (60) may be disposed substantially beneath the second coiled member to achieve a desired curvature at the distal tip of the wire guide.
摘要:
The present invention provides a wire guide (20) suitable for use in a body vessel, such as a peripheral vessel. The wire guide comprises a core member (22) and a first coiled member (40), each having proximal and distal ends. In one embodiment, the core member comprises at least one recessed portion (36), wherein the proximal end of the first coiled member is seated at least partially within the recessed portion to form a substantially flush exterior surface with the core member. The wire guide further preferably comprises a second coiled member (50) having proximal and distal ends, wherein the second coiled member is disposed distal to the first coiled member. The distal end of the first coiled member may be partially intertwined with the proximal end of. the second coiled member. A shaping ribbon (60) may be disposed substantially beneath the second coiled member to achieve a desired curvature at the distal tip of the wire guide.
摘要:
An implantable medical device includes, according to one embodiment, at least one radiopaque and MRI-compatible component comprising an oxide dispersion strengthened metal alloy, where the oxide dispersion strengthened metal alloy has a volume magnetic susceptibility of no greater than about 100×10−6 and a radiopacity greater than that of grade 304 stainless steel.
摘要:
An apparatus and method for splitting or otherwise separating and routing optical fibers are provided in which a splitter housing having first and second separable halves is mounted upon a plurality of optical fibers without having to cut all of the optical fibers. The splitter housing generally includes an inline portion and a branch portion. The inline portion defines an input port at one end for receiving a plurality of optical fibers and a primary output port at the opposed end through which at least one optical fiber exits. The branch portion extends outwardly from the inline portion at one end and defines a secondary output port at the opposed end. The branch portion is in communication with the inline portion such that at least one optical fiber that enters through the input port can be separated from the remainder of the optical fibers and routed through the branch portion.
摘要:
An apparatus is provided for strain relieving a communications cable having a non-cylindrical cross section and for optimally positioning a plurality of the cables. The apparatus includes at least two plates oriented adjacent one another. Each of the plates has at least one mounting surface and at least one strain relief surface. The strain relief surface may be angled relative to the mounting surface. At least one fastener draws the plates together to grip the cable between the strain relief surfaces. The apparatus may further include a plurality of laterally extending teeth depending from the strain relief surface of at least one of the plates. The teeth increase the gripping force applied to the cable. The cable may have an electrically conductive inner sheath that is pierced by the teeth on the strain relief surface and the apparatus may be further provided with a ground strap for grounding the cable.
摘要:
A woven fabric for an implantable medical device includes a plurality of carbon nanotube strands interwoven with a plurality of textile strands, where each carbon nanotube strand comprises a plurality of carbon nanotubes. An implantable medical device comprises a component and a fabric secured to the component, where the fabric includes a plurality of woven carbon nanotube strands, and each of the carbon nanotube strands comprises a plurality of carbon nanotubes.
摘要:
The disclosure relates to a woven fabric for use in an implantable medical device. The woven fabric has shape memory element strands woven with textile strands. At least one of the shape memory element strands has at least one float of at least five textile strands between binding points.
摘要:
Medical devices are made visible under ultrasonic or magnetic imaging techniques by adding a series of features on their surfaces. The features are desirably placed at more than one angle to the surface in order to enhance the visibility of the surface. Laser-machining can make a series of depressions or voids that are symmetric with respect to the surface and another series of depressions or voids that are non-symmetric. The pattern of voids is also varied by using more than one size of void, the depth of the voids, and the distribution of voids, i.e. more voids in some areas than others.
摘要:
Disclosed herein is a nickel-titanium alloy comprising nickel, titanium, and at least one rare earth element. The nickel-titanium alloy comprises from about 34 at. % to about 60 at. % nickel, from about 34 at. % to about 60 at. % titanium, and from about 0.1 at. % to about 15 at. % at least one rare earth element. The nickel-titanium alloy may further include one or more additional alloying elements. In addition to radiopacity, the nickel-titanium alloy preferably exhibits superelastic or shape memory behavior. Medical devices comprising the nickel-titanium alloy and a method of making them are also disclosed.
摘要:
Disclosed herein is a nickel-titanium alloy comprising nickel, titanium, and at least one rare earth element. The nickel-titanium alloy comprises from about 34 at. % to about 60 at. % nickel, from about 34 at. % to about 60 at. % titanium, and from about 0.1 at. % to about 15 at. % at least one rare earth element. The nickel-titanium alloy may further include one or more additional alloying elements. In addition to radiopacity, the nickel-titanium alloy preferably exhibits superelastic or shape memory behavior. Medical devices comprising the nickel-titanium alloy and a method of making them are also disclosed.