摘要:
This invention helps achieve accurate focussing of therapeutic radiation at an internal structure (e.g. cancerous organ), which is often substantially movable within a living body. For this purpose, suitable sensors are laproscopically or surgically implanted at the location of the organ. These sensors may include semiconductor materials, scintillation materials, piezo-acoustic materials, x-ray emitters, or other materials which emit a signal when they are scanned by a beam of harmless investigative radiation, such as low intensity therapeutic radiation. The emitted signal is then monitored via implanted wires or light fibers or via external detectors during scanning to determine the targetted location at which a signal maximum occurs, whereupon the desired intensity of therapeutic radiation is focussed on this targetted location.
摘要:
The invention allows more accurate localization of radiation volumes during radiation treatment of tumors. The equipment includes radiation detector elements placed behind the patient during radiation, for treatment of a tumor condition. Such a detector may be constructed of semiconductor or a scintillating material. The radiation treatment plan for the patient includes an additional calculation of the treatment beam energy required for to enable the treatment beam to transit the patient. The energy required for patient transit is then measured, using a treatment beam with a beam current below that which will induce significant tissue damage. The experimental transit flux is then compared to the calculated transit flux, and the difference is used to correct the beam transport parameters in the original radiation treatment plan. Hence lower radiation doses and smaller radiation volumes can be achieved, reducing deleterious radiation side effects.
摘要:
The invention provides a system for therapeutic treatment of an organ, tumor, or other internal structure of a living body with therapeutic radiation after implantation, at the organ, of a magnetic element to identify the location of the organ, the element being capable of emitting a magnetic signal in response to an applied magnetic field. The system comprises a magnetic field generator for irradiating the magnetic element with an applied magnetic field, a movable magnetic field sensor for detecting the magnetic signal from a plurality of selected mutually displaced positions to produce a corresponding plurality of element-locating signals, a computing apparatus for converting the signals to a location image of the internal structure, and a controlled source of therapeutic radiation for focussing a selected degree and duration of therapeutic radiation at a target determined from the location image of the magnetic element. Preferably, the magnetic element is a length of wire of an amorphous magnetic material which produces a magnetic signal that exhibits non-linear Bark+hausen jumps in response to an applied ac magnetic field.
摘要翻译:本发明提供了一种用于在植入后在器官处的磁性元件的治疗性放射治疗处理器官,肿瘤或其他内部结构的系统,以识别器官的位置,该元件能够发射 响应于施加的磁场的磁信号。 该系统包括用于用施加的磁场照射磁性元件的磁场发生器,用于从多个选定的相互移位的位置检测磁信号以产生相应的多个元件定位信号的可移动磁场传感器,计算装置 用于将信号转换为内部结构的位置图像,以及受控的治疗辐射源,用于聚焦在从磁性元件的位置图像确定的目标处的治疗辐射的选定程度和持续时间。 优选地,磁性元件是非晶磁性材料的线的长度,其产生响应于所施加的交流磁场而呈现非线性的巴克+ ha en跳跃的磁信号。
摘要:
One feature pertains to a radiation dosimeter comprising a microdosimeter cell array that includes a first microdosimeter cell having a first semiconductor volume configured to generate a first current in response to incident radiation. The first semiconductor volume may have at least one of a first size, a first shape, a first semiconductor type, and/or a first semiconductor doping type and concentration that is associated with a first biological cell type or a first biological cell component type. The dosimeter may further comprise a processing circuit communicatively coupled to the microdosimeter cell array and configured to generate a signal based on the first current. The signal generated may be indicative of an amount of radiation absorbed by the microdosimeter cell array. A display may be utilized by the dosimeter to show a radiation level reading based on the signal generated.
摘要:
A method of formation of a microelectromechanical system (MEMS) resonator or filter which is compatible with integration with any analog, digital, or mixed-signal integrated circuit (IC) process, after or concurrently with the formation of the metal interconnect layers in those processes, by virtue of its materials of composition, processing steps, and temperature of fabrication is presented. The MEMS resonator or filter incorporates a lower metal level, which forms the electrodes of the MEMS resonator or filter, that may be shared with any or none of the existing metal interconnect levels on the IC. It further incorporates a resonating member that is comprised of at least one metal layer for electrical connection and electrostatic actuation, and at least one dielectric layer for structural purposes. The gap between the electrodes and the resonating member is created by the deposition and subsequent removal of a sacrificial layer comprised of a carbon-based material. The method of removal of the sacrificial material is by an oxygen plasma or an anneal in an oxygen containing ambient. A method of vacuum encapsulation of the MEMS resonator or filter is provided through means of a cavity containing the MEMS device, filled with additional sacrificial material, and sealed. Access vias are created through the membrane sealing the cavity; the sacrificial material is removed as stated previously, and the vias are re-sealed in a vacuum coating process.
摘要:
One feature pertains to a microdosimeter cell array that includes a plurality of microdosimeter cells each having a semiconductor volume adapted to generate a current in response to incident radiation. The semiconductor volumes of each of the plurality of microdosimeter cells have at least one of a size, a shape, a semiconductor type, and/or a semiconductor doping type and concentration that is associated with one or more cells or cell components of a human eye. A processing circuit is also communicatively coupled to the microdosimeter cell array and generates a signal based on the currents generated by the semiconductor volumes of the plurality of microdosimeter cells. The signal generated by the processing circuit is indicative of an amount of radiation absorbed by the microdosimeter cell array.
摘要:
One feature pertains to a radiation dosimeter comprising a microdosimeter cell array that includes a first microdosimeter cell having a first semiconductor volume configured to generate a first current in response to incident radiation. The first semiconductor volume may have at least one of a first size, a first shape, a first semiconductor type, and/or a first semiconductor doping type and concentration that is associated with a first biological cell type or a first biological cell component type. The dosimeter may further comprise a processing circuit communicatively coupled to the microdosimeter cell array and configured to generate a signal based on the first current. The signal generated may be indicative of an amount of radiation absorbed by the microdosimeter cell array. A display may be utilized by the dosimeter to show a radiation level reading based on the signal generated.
摘要:
A microelectromechanical system (MEMS) resonator or filter including a first conductive layer, one or more electrodes patterned in the first conductive layer which serve the function of signal input, signal output, or DC biasing, or some combination of these functions, an evacuated cavity, a resonating member comprised of a lower conductive layer and an upper structural layer, a first air gap between the resonating member and one or more of the electrodes, an upper membrane covering the cavity, and a second air gap between the resonating member and the upper membrane.
摘要:
One feature pertains to a microdosimeter cell array that includes a plurality of microdosimeter cells each having a semiconductor volume adapted to generate a current in response to incident radiation. The semiconductor volumes of each of the plurality of microdosimeter cells have at least one of a size, a shape, a semiconductor type, and/or a semiconductor doping type and concentration that is associated with one or more cells or cell components of a human eye. A processing circuit is also communicatively coupled to the microdosimeter cell array and generates a signal based on the currents generated by the semiconductor volumes of the plurality of microdosimeter cells. The signal generated by the processing circuit is indicative of an amount of radiation absorbed by the microdosimeter cell array.
摘要:
A microelectromechanical system (MEMS) resonator or filter including a first conductive layer, one or more electrodes patterned in the first conductive layer which serve the function of signal input, signal output, or DC biasing, or some combination of these functions, an evacuated cavity, a resonating member comprised of a lower conductive layer and an upper structural layer, a first air gap between the resonating member and one or more of the electrodes, an upper membrane covering the cavity, and a second air gap between the resonating member and the upper membrane.