摘要:
Fabricating a semiconductor chip with backside optical vias is provided. A silicon wafer is received for processing. The silicon wafer includes an optically transparent oxide layer on a frontside of the silicon wafer. A complementary metal-oxide-semiconductor layer is formed on top of the optically transparent oxide layer. A backside of the silicon wafer is etched to form optical vias in a silicon substrate using the optically transparent oxide layer as an etch-stop.
摘要:
A microelectromechanical system (MEMS) resonator or filter including a first conductive layer, one or more electrodes patterned in the first conductive layer which serve the function of signal input, signal output, or DC biasing, or some combination of these functions, an evacuated cavity, a resonating member comprised of a lower conductive layer and an upper structural layer, a first air gap between the resonating member and one or more of the electrodes, an upper membrane covering the cavity, and a second air gap between the resonating member and the upper membrane.
摘要:
A dielectric layer for use in a magneto-optic storage medium contains a compound glass of SiO2—MO2, SiO2—M2O3, or SiO2—M2O5 and combinations thereof where M is selected from Zr, Ti, Al, Nb, Y, Sn, In, Ta and Sb.
摘要翻译:用于磁光存储介质的电介质层包含SiO 2 -MO 2,SiO 2 -M 2 O 3或SiO 2 -M 2 O 5的复合玻璃及其组合,其中M选自Zr,Ti,Al,Nb,Y,Sn,In ,Ta和Sb。
摘要:
Methods and apparatus for forming through-vias are presented, for example, a method for forming a via in a portion of a semiconductor wafer comprising a substrate. The method comprises forming a trench surrounding a first part of the substrate such that the first part is separated from a second part of the substrate, forming a hole through the substrate within the first part, and forming a first metal within the hole. The trench extends through the substrate. The first metal extends from a front surface of the substrate to a back surface of the substrate. The via comprises the hole and the first metal.
摘要:
A pillar structure that is contacted by a vertical contact is formed in an integrated circuit. A hard mask is formed and utilized to pattern a least a portion of the pillar structure. The hard mask comprises carbon. Subsequently, the hard mask is removed. A conductive material is then deposited in a region previously occupied by the hard mask to form the vertical contact. The hard mask may, for example, comprise diamond-like carbon. The pillar structure may have a width or diameter less than about 100 nanometers.
摘要:
A method of formation of a microelectromechanical system (MEMS) resonator or filter which is compatible with integration with any analog, digital, or mixed-signal integrated circuit (IC) process, after or concurrently with the formation of the metal interconnect layers in those processes, by virtue of its materials of composition, processing steps, and temperature of fabrication is presented. The MEMS resonator or filter incorporates a lower metal level, which forms the electrodes of the MEMS resonator or filter, that may be shared with any or none of the existing metal interconnect levels on the IC. It further incorporates a resonating member that is comprised of at least one metal layer for electrical connection and electrostatic actuation, and at least one dielectric layer for structural purposes. The gap between the electrodes and the resonating member is created by the deposition and subsequent removal of a sacrificial layer comprised of a carbon-based material. The method of removal of the sacrificial material is by an oxygen plasma or an anneal in an oxygen containing ambient. A method of vacuum encapsulation of the MEMS resonator or filter is provided through means of a cavity containing the MEMS device, filled with additional sacrificial material, and sealed. Access vias are created through the membrane sealing the cavity; the sacrificial material is removed as stated previously, and the vias are re-sealed in a vacuum coating process.
摘要:
Methods and apparatus for forming through-vias are presented, for example, a method for forming a via in a portion of a semiconductor wafer comprising a substrate. The method comprises forming a trench surrounding a first part of the substrate such that the first part is separated from a second part of the substrate, forming a hole through the substrate within the first part, and forming a first metal within the hole. The trench extends through the substrate. The first metal extends from a front surface of the substrate to a back surface of the substrate. The via comprises the hole and the first metal.
摘要:
A method of patterning and releasing chemically sensitive low k films without the complication of a permanent hardmask stack, yielding an unaltered free-standing structure is provided. The method includes providing a structure including a Si-containing substrate having in-laid etch stop layers located therein; forming a chemically sensitive low k film and a protective hardmask having a pattern atop the structure; transferring the pattern to the chemically sensitive low k film to provide an opening that exposes a portion of the Si-containing substrate; and etching the exposed portion of the Si-containing substrate through the opening to provide a cavity in the Si-containing substrate in which a free-standing low k film structure is formed, while removing the hardmask. In accordance with the present invention, the etching comprises a XeF2 etch gas.
摘要翻译:提供了图案化和释放化学敏感性低k膜的方法,而不需要永久性硬掩模堆叠的复杂性,产生未改变的独立结构。 该方法包括提供包括其中位于其中的内置蚀刻停止层的含Si衬底的结构; 形成化学敏感的低k膜和在结构顶部具有图案的保护性硬掩模; 将图案转移到化学敏感的低k膜上以提供暴露一部分含Si衬底的开口; 并且通过所述开口蚀刻含Si衬底的暴露部分,以在去除硬掩模的同时在其中形成独立的低k膜结构的含Si衬底中提供空腔。 根据本发明,蚀刻包括XeF 2 N 2蚀刻气体。
摘要:
A low dielectric constant, thermally stable hydrogenated oxidized silicon carbon film which can be used as an interconnect dielectric in IC chips is disclosed. Also disclosed is a method for fabricating a thermally stable hydrogenated oxidized silicon carbon low dielectric constant film utilizing a plasma enhanced chemical vapor deposition technique. Electronic devices containing insulating layers of thermally stable hydrogenated oxidized silicon carbon low dielectric constant materials that are prepared by the method are further disclosed. To enable the fabrication of thermally stable hydrogenated oxidized silicon carbon low dielectric constant film, specific precursor materials having a ring structure are preferred.
摘要:
A novel air-gap-containing interconnect wiring structure is described incorporating a solid low-k dielectric in the via levels, and a composite solid plus air-gap dielectric in the wiring levels. Also provided is a method for forming such an interconnect structure. The method is readily scalable to interconnect structures containing multiple wiring levels, and is compatible with Dual Damascene Back End of the Line (BEOL) processing.