摘要:
The present invention discloses a design for a single-chip dual-axis magnetic field sensor, based on magnetic tunnel junction (MTJ) elements and permanent magnets integrated on a semiconductor substrate to produce two types of sensor bridges that detect orthogonal magnetic field components. The orthogonal magnetic field component detection capability results from the different types of sensor bridges that can be produced by varying the shape of the MTJ elements and the bias fields that can be created by permanent magnets. Because the permanent magnets can create orthogonal bias fields on the different sensor bridges, it is possible to use a single pinned layer to set direction for both sensor bridges. This is advantageous because it permits the two-axis sensor to be fabricated on a single semiconductor chip without the need for specialized processing technology such as local heating, or deposition of multiple magnetoresistive films with different pinned layers setting directions.
摘要:
The present invention discloses a design of a single-chip push-pull bridge sensor, composed of magnetoresistive elements, utilizing on-chip permanent magnets. The permanent magnets are oriented to preset magnetization directions of free layers of adjacent sensor bridge arms so that they point to different directions with respect the same sensing direction, enabling push-pull operation. The push-pull bridge sensor of the present invention is integrated on a single chip. Additionally, an on-chip coil is disclosed to reset or calibrate the magnetization directions of the free layers of the magnetoresistive elements.
摘要:
A magnetoresistive sensor bridge utilizing magnetic tunnel junctions is disclosed. The magnetoresistive sensor bridge is composed of one or more magnetic tunnel junction sensor chips to provide a half-bridge or full bridge sensor in a standard semiconductor package. The sensor chips may be arranged such that the pinned layers of the different chips are mutually anti-parallel to each other in order to form a push-pull bridge structure. The sensor chips are then interconnected using wire bonding. The chips can be wire-bonded to various standard semiconductor leadframes and packaged in inexpensive standard semiconductor packages. The bridge design may be push-pull or referenced. In the referenced case, the on-chip reference resistors may be implemented without magnetic shielding.
摘要:
The present invention discloses a design for a single-chip dual-axis magnetic field sensor, based on magnetic tunnel junction (MTJ) elements and permanent magnets integrated on a semiconductor substrate to produce two types of sensor bridges that detect orthogonal magnetic field components. The orthogonal magnetic field component detection capability results from the different types of sensor bridges that can be produced by varying the shape of the MTJ elements and the bias fields that can be created by permanent magnets. Because the permanent magnets can create orthogonal bias fields on the different sensor bridges, it is possible to use a single pinned layer to set direction for both sensor bridges. This is advantageous because it permits the two-axis sensor to be fabricated on a single semiconductor chip without the need for specialized processing technology such as local heating, or deposition of multiple magnetoresistive films with different pinned layers setting directions.
摘要:
The present invention discloses a design and manufacturing method for a single-chip magnetic sensor bridge. The sensor bridge comprises four magnetoresistive elements. The magnetization of the pinned layer of each of the four magnetoresistive elements is set in the same direction, but the magnetization directions of the free layers of the magnetoresistive elements on adjacent arms of the bridge are set at different angles with respect to the pinned layer magnetization direction. The absolute values of the angles of the magnetization directions of the free layers of all four magnetoresistive elements are the same with respect with their pinning layers. The disclosed magnetic biasing scheme enables the integration of a push-pull Wheatstone bridge magnetic field sensor on a single chip with better performance, lower cost, and easier manufacturability than conventional magnetoresistive sensor designs.
摘要:
A single-package bridge-type magnetic-field angle sensor comprising one or more pairs of magnetic tunnel junction sensor chips rotated relative to each other by 90 degrees in order to detect two magnetic field components in orthogonal directions respectively is disclosed. The magnetic-field angle sensor may comprise a pair of MTJ full-bridges or half-bridges interconnected with a semiconductor package lead. The magnetic-field angle sensor can be packaged into various low-cost standard semiconductor packages.
摘要:
A multi-chip push-pull magnetoresistive bridge sensor utilizing magnetic tunnel junctions is disclosed. The magnetoresistive bridge sensor is composed of a two or more magnetic tunnel junction sensor chips placed in a semiconductor package. For each sensing axis parallel to the surface of the semiconductor package, the sensor chips are aligned with their reference directions in opposition to each other. The sensor chips are then interconnected as a push-pull half-bridge or Wheatstone bridge using wire bonding. The chips are wire-bonded to any of various standard semiconductor lead frames and packaged in inexpensive standard semiconductor packages.
摘要:
A magnetoresistive sensor bridge utilizing magnetic tunnel junctions is disclosed. The magnetoresistive sensor bridge is composed of one or more magnetic tunnel junction sensor chips to provide a half-bridge or full bridge sensor in a standard semiconductor package. The sensor chips may be arranged such that the pinned layers of the different chips are mutually anti-parallel to each other in order to form a push-pull bridge structure. The sensor chips are then interconnected using wire bonding. The chips can be wire-bonded to various standard semiconductor leadframes and packaged in inexpensive standard semiconductor packages. The bridge design may be push-pull or referenced. In the referenced case, the on-chip reference resistors may be implemented without magnetic shielding.
摘要:
The present invention discloses a design of a single-chip push-pull bridge sensor, composed of magnetoresistive elements, utilizing on-chip permanent magnets. The permanent magnets are oriented to preset magnetization directions of free layers of adjacent sensor bridge arms so that they point to different directions with respect the same sensing direction, enabling push-pull operation. The push-pull bridge sensor of the present invention is integrated on a single chip. Additionally, an on-chip coil is disclosed to reset or calibrate the magnetization directions of the free layers of the magnetoresistive elements.
摘要:
A multi-chip push-pull magnetoresistive bridge sensor utilizing magnetic tunnel junctions is disclosed. The magnetoresistive bridge sensor is composed of a two or more magnetic tunnel junction sensor chips placed in a semiconductor package. For each sensing axis parallel to the surface of the semiconductor package, the sensor chips are aligned with their reference directions in opposition to each other. The sensor chips are then interconnected as a push-pull half-bridge or Wheatstone bridge using wire bonding. The chips are wire-bonded to any of various standard semiconductor lead frames and packaged in inexpensive standard semiconductor packages.