摘要:
The invention is directed to methods of starting up reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The methods provide appropriate mechanisms of heating and loading the activated molecular sieves to protect against loss of catalytic activity that can occur due to contact with water molecules.
摘要:
The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
摘要:
The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
摘要:
The invention is directed to methods of shutting down reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The methods provide appropriate mechanisms of stopping feed to the reactor and unloading catalyst to protect against loss of catalytic activity that can occur due to contact with water molecules.
摘要:
Disclosed is a method of protecting the loss of catalytic activity of metalloaluminophosphate molecular sieve, particularly a SAPO molecular sieve, from contact with moisture. The method involves heating the metalloaluminophosphate molecular sieve so as to remove template, and provide a molecular sieve in sufficiently dry form for storage.
摘要:
Metalloaluminophosphate molecular sieves and metalloaluminophosphate molecular sieve catalyst particles are protecting from degradation by water by maintaining said molecular sieves or catalysts in contact with a liquid mixture of alcohol and water, the mixture of alcohol and water containing from 45 wt % to 99.8 wt % alcohol. The metalloaluminophosphate molecular sieves and metalloaluminophosphate molecular sieve catalyst particles which have been protected in such fashion catalyze the conversion of feedstocks to hydrocarbons.
摘要:
The invention is directed to a method for modifying a microporous metalloaluminophosphate molecular sieve, the method comprising the steps of a) introducing a compound containing at least one M-X group within the cages of said microporous molecular sieve; and b) reacting said compound containing at least one M-X group with the acid groups located in the cages of the molecular sieve, wherein the compound containing at least one M-X group is selected from the group consisting of compounds of formula MX3, compounds of formula M2X6, and mixtures thereof, M being a metal belonging to Group 13 of the Periodic Table, and each X independently being a hydrogen or halogen atom. Preferably, X is a hydrogen atom. The present invention also relates to modified metalloaluminophosphate molecular sieves, preferably modified silicoaluminophosphate molecular sieves, as well as to the use of these modified molecular sieves in catalytic processes, such as processes for the conversion of oxygenated hydrocarbon feedstocks.
摘要:
Metalloaluminophosphate molecular sieves and metalloaluminophosphate molecular sieve catalyst particles are protecting from degradation by water by maintaining said molecular sieves or catalysts in contact with a liquid mixture of alcohol and water, the mixture of alcohol and water containing from 45 wt % to 99.8 wt % alcohol. The metalloaluminophosphate molecular sieves and metalloaluminophosphate molecular sieve catalyst particles which have been protected in such fashion catalyze the conversion of feedstocks to hydrocarbons.
摘要:
The invention is directed to a method for modifying a microporous metalloaluminophosphate molecular sieve, the method comprising the steps of a) introducing a compound containing at least one M-X group within the cages of said microporous molecular sieve; and b) reacting said compound containing at least one M-X group with the acid groups located in the cages of the molecular sieve, wherein the compound containing at least one M-X group is selected from the group consisting of compounds of formula MX3, compounds of formula M2X6, and mixtures thereof, M being a metal belonging to Group 13 of the Periodic Table, and each X independently being a hydrogen or halogen atom. Preferably, X is a hydrogen atom. The present invention also relates to modified metalloaluminophosphate molecular sieves, preferably modified silicoaluminophosphate molecular sieves, as well as to the use of these modified molecular sieves in catalytic processes, such as processes for the conversion of oxygenated hydrocarbon feedstocks.
摘要:
The invention is directed to a method of stabilizing metalloaluminophosphate molecular sieves and catalysts derived therefrom. In particular, the invention is directed to a method of treating such molecular sieves with chemisorbed ammonia, which may be easily desorbed before or during use and after storage. The invention is also directed to formulating the molecular sieve into a catalyst useful in a process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.