摘要:
Provided is a novel chamber effluent monitoring system. The system comprises a chamber having an exhaust line connected thereto. The exhaust line includes a sample region, wherein substantially all of a chamber effluent also passes through the sample region. The system further comprises an absorption spectroscopy measurement system for detecting a gas phase molecular species. The measurement system comprises a light source and a main detector in optical communication with the sample region through one or more light transmissive window. The light source directs a light beam into the sample region through one of the one or more light transmissive window. The light beam passes through the sample region and exits the sample region through one of the one or more light transmissive window. The main detector responds to the light beam exiting the sample region. The system allows for in situ measurement of molecular gas impurities in a chamber effluent, and in particular, in the effluent from a semiconductor processing chamber. Particular applicability is found in semiconductor manufacturing process control and hazardous gas leak detection.
摘要:
Provided is a novel chamber effluent monitoring system. The system comprises a chamber having an exhaust line connected thereto. The exhaust line includes a sample region, wherein substantially all of a chamber effluent also passes through the sample region. The system further comprises an absorption spectroscopy measurement system for detecting a gas phase molecular species. The measurement system comprises a light source and a main detector in optical communication with the sample region through one or more light transmissive window. The light source directs a light beam into the sample region through one of the one or more light transmissive window. The light beam passes through the sample region and exits the sample region through one of the one or more light transmissive window. The main detector responds to the light beam exiting the sample region. The system allows for in situ measurement of molecular gas impurities in a chamber effluent, and in particular, in the effluent from a semiconductor processing chamber. Particular applicability is found in semiconductor manufacturing process control and hazardous gas leak detection.
摘要:
Provided is a novel chamber effluent monitoring system. The system comprises a chamber having an exhaust line connected thereto. The exhaust line includes a sample region, wherein substantially all of a chamber effluent also passes through the sample region. The system further comprises an absorption spectroscopy measurement system for detecting a gas phase molecular species. The measurement system comprises a light source and a main detector in optical communication with the sample region through one or more light transmissive window. The light source directs a light beam into the sample region through one of the one or more light transmissive window. The light beam passes through the sample region and exits the sample region through one of the one or more light transmissive window. The main detector responds to the light beam exiting the sample region. The system allows for in situ measurement of molecular gas impurities in a chamber effluent, and in particular, in the effluent from a semiconductor processing chamber. Particular applicability is found in semiconductor manufacturing process control and hazardous gas leak detection.
摘要:
Provided is a novel chamber effluent monitoring system. The system comprises a chamber having an exhaust line connected thereto. The exhaust line includes a sample region, wherein substantially all of a chamber effluent also passes through the sample region. The system further comprises an absorption spectroscopy measurement system for detecting a gas phase molecular species. The measurement system comprises a light source and a main detector in optical communication with the sample region through one or more light transmissive window. The light source directs a light beam into the sample region through one of the one or more light transmissive window. The light beam passes through the sample region and exits the sample region through one of the one or more light transmissive window. The main detector responds to the light beam exiting the sample region. The system allows for in situ measurement of molecular gas impurities in a chamber effluent, and in particular, in the effluent from a semiconductor processing chamber. Particular applicability is found in semiconductor manufacturing process control and hazardous gas leak detection.
摘要:
A fluid purification and recovery system includes a buffer section configured to receive a fluid delivered from a process station, where the fluid pressure is maintained within the buffer section within a predetermined range and the fluid is maintained within the buffer section in at least one of a gas state, a liquid state and a supercritical state. The system further includes a purification section disposed downstream from the buffer section to receive the fluid from the buffer section, where the purification section includes at least one purification unit that separates at least a portion of at least one component from the fluid. In one embodiment, the fluid is maintained in at least one of a liquid state and a supercritical state in both the buffer section and the purification section. In addition, the buffer section delivers the fluid to the purification with minimal or substantially no fluctuations in pressure.
摘要:
Improved electrochemical planarization of an anode surface is performed by rotating either an anode or a cathode and applying a voltage therebetween. The cathode has a surface facing the anode and is configured such that the surface does not extend over all of the anode surface to be planarized during rotation of the anode or cathode. Preferably, the anode is a patterned or unpatterned semiconductor wafer with electroplated metal thereon, such as copper.
摘要:
Provided is a process for measuring the amount of impurities in a gas sample filling a laser absorption spectroscopy analysis cell. The process includes calculating the value of a characteristic representative of the absorbance of the gas sample, from a measurement of the gas sample at a single given pressure, and quantifying the impurities on the basis of a predetermined law for the variation of the characteristic as a function of the amount of impurities. The characteristic is the ratio of the difference between the luminous intensity (Iana) of a light beam transmitted through the gas and the luminous intensity (Iref) of the incident beam to the luminous intensity (Iref) of the incident beam. The impurities are quantified on the basis of a value of the coefficient of proportionality between the amount of impurities and the characteristic, determined on the basis of a table of variation of the characteristic as a function of pressure, for a given amount of impurities.
摘要:
Provided is a novel method for rapidly determining an impurity level in a gas source. A gas source and a measurement tool are provided for measuring an impurity level in a gas flowing from the gas source. The measurement tool is in communication with the gas source through a sampling line. The sampling line has a gas inlet disposed upstream from a gas outlet. The sampling line is baked according to a baking strategy, such that when baking is terminated, a concentration profile of the impurity in the sampling line contains a first region and a second region. In the first region, extending from the gas inlet to a point downstream from the inlet, the vapor phase concentration of the impurity is less than the vapor phase concentration of the impurity in the gas entering the sampling line. In the second region, located downstream from the first region and extending to the gas outlet, the vapor phase concentration of the impurity is greater than the vapor phase concentration of the impurity in the gas entering the sampling line. A method for rapidly determining an impurity level in a gas distribution system which delivers gas to a point of use is also provided. Particular applicability is found in the semiconductor processing industry to measure impurities in gases delivered to processing tools.
摘要:
The subject of the present invention is a method and a device for filling a distribution line (20) with corrosive gas. The said method is a method for filling with gas, with passivation, a line (20) for distributing corrosive gas, which line is intended to distribute the said corrosive gas to a system (3) located immediately downstream of the said line (20); the said method comprising: prior conditioning of the said line (20); the actual filling of the said line (20) with the said corrosive gas known as an active gas. Characteristically, the said actual filling with gas comprises: at least one cycle of filling the said line (20) with active gas as far as immediately upstream of the system (3) and of removing the said active gas thus introduced into the said line (20); the said removal being performed without the said active gas passing through the said system (3); followed by the final filling of the said line (20) with gas so as to make the said gas available to the said system (3).
摘要:
Provided is a novel method and system for harmonic detection spectroscopy. The method comprises providing a cell having a sample region which is circumscribed by at least one wall. The cell has at least one light entry/exit port, with each entry/exit port containing a light transmissive window having a surface facing the sample region and disposed so as to seal the cell in the circumferential direction. A sample gas flows through the sample region in a direction parallel to a cell central axis, and the cell operates at less than atmospheric pressure. A frequency and/or amplitude modulated light source is provided for directing a light beam through one of the at least one light transmissive windows into the cell. The light source modulation amplitude is set to a value which approximately maximizes the value of a harmonic signal at the center of the absorption feature due to the detected gas phase molecular species inside the sample region, and the center frequency of the light source is adjusted so that it is either locked to the center of the absorption feature or repetitively scanned over the frequency range which includes the feature. A spectra is then generated which may be recorded individually or averaged. A detector is provided for measuring the light beam exiting the cell through one of the at least one light transmissive windows. The light source and detector are contained within a chamber which is external to the cell and isolated from the sample region, the chamber and the sample region being placed in optical communication with each other through at least one of the at least one light transmissive windows. The pressure inside the chamber is controlled to a value which is positive relative to atmospheric pressure. The method can be used to detect gas phase molecular species in a sample. Particular applicability is found in semiconductor processing.