摘要:
In general, the invention provides methods for use in the acquisition and display of ultrasound images. In particular, the invention provides methods for displaying ultrasound images using gating of ultrasound acquisition based on subject respiration and/or triggering ultrasound acquisition based on subject ECG. The methods may be employed with any suitable ultrasound system.
摘要:
In general, the invention provides methods for use in the acquisition and display of ultrasound images. In particular, the invention provides methods for displaying ultrasound images using a persistence algorithm, gating ultrasound acquisition based on subject respiration, triggering ultrasound acquisition based on subject ECG, and destroying bubble contrast agents during imaging. The methods may be employed with any suitable ultrasound system.
摘要:
A system for acquiring an ultrasound signal comprises a signal processing unit adapted for acquiring a received ultrasound signal from an ultrasound transducer having a plurality of elements. The system is adapted to receive ultrasound signals having a frequency of at least 20 megahertz (MHz) with a transducer having a field of view of at least 5.0 millimeters (mm) at a frame rate of at least 20 frames per second (fps). The signal processing can further produce an ultrasound image from the acquired ultrasound signal. The transducer can be a linear array transducer, a phased array transducer, a two-dimensional (2-D) array transducer, or a curved array transducer.
摘要:
A method of creating an image difference overlay comprises identifying a loop of reference images of a subject and identifying a loop of data images of the subject. The loop of image data can be identified after an event, such as the administration of contrast agent to the subject. A reference loop image frame is compared to one or more data loop image frames and the reference loop frame is associated with a data loop image frame which closely resembles the data loop image frame. Each of the associated frames can then be processed and used to create an image difference overlay frame.
摘要:
A system for acquiring an ultrasound signal comprises a signal processing unit adapted for acquiring a received ultrasound signal from an ultrasound transducer having a plurality of elements. The system is adapted to receive ultrasound signals having a frequency of at least 20 megahertz (MHz) with a transducer having a field of view of at least 5.0 millimeters (mm) at a frame rate of at least 20 frames per second (fps). The signal processing can further produce an ultrasound image from the acquired ultrasound signal. The transducer can be a linear array transducer, a phased array transducer, a two-dimensional (2-D) array transducer, or a curved array transducer.
摘要:
A method of creating an image difference overlay comprises identifying a loop of reference images of a subject and identifying a loop of data images of the subject. The loop of image data can be identified after an event, such as the administration of contrast agent to the subject. A reference loop image frame is compared to one or more data loop image frames and the reference loop frame is associated with a data loop image frame which closely resembles the data loop image frame. Each of the associated frames can then be processed and used to create an image difference overlay frame.
摘要:
This invention employs multiple ultrasound pulse firings of either alternating phase and/or amplitude to detect nonlinear fundamental and subharmonic signals from microbubble contrast agents within living tissue, at high frequencies (≧15 MHz), e.g., with a linear array transducer. It can be shown that the contrast-to-tissue ratio (CTR) decreases with increasing ultrasound frequency because of nonlinear ultrasound propagation in tissue. However, using the subharmonic signal in addition to the nonlinear fundamental harmonic component, rather than the conventional second harmonic used at lower frequencies, provides appreciable signal strength to overcome the limitations of nonlinear tissue propagation. Additionally, the method provides for the ability to switch, at some desired frequency above 20 MHz, into a purely alternating phase inversion acquisition, in combination with bandpass filtering of the subharmonic frequency band, minimizing the losses in CTR as the frequency increases. This maintains contrast sensitivity for more limited fields of view, as penetration depth will be limited at higher frequencies. Thus, within the same micro-ultrasound imaging system, many applications of microbubble detection can be achieved with a wide range of frequencies that covers both resolution and sensitivity requirements.
摘要:
The invention disclosed herein features a photoacoustic scan head that includes laser fibers integrated into the housing of an arrayed ultrasound transducer using an optically transparent epoxy or other resin. The light-emitting ends of the fibers are positioned adjacent to the front surface of the transducer and direct laser light onto a subject being scanned by the transducer. The light beams generated by the fibers may be angled to intersect the acoustic field generated by the transducer so as to generate a photoacoustic effect in the region scanned by the transducer.
摘要:
In one aspect, matching layers for an ultrasonic transducer stack having a matching layer comprising a matrix material loaded with a plurality of micron-sized and nano-sized particles. In another aspect, the matrix material is loaded with a plurality of heavy and light particles. In another aspect, an ultrasound transducer stack comprises a piezoelectric layer and at least one matching layer. In one aspect, the matching layer comprises a composite material comprising a matrix material loaded with a plurality of micron-sized and nano-sized particles. In a further aspect, the composite material can also comprise a matrix material loaded with a plurality of heavy and light particles. In a further aspect, a matching layer can also comprise cyanoacrylate.
摘要:
In one aspect, matching layers for an ultrasonic transducer stack having a matching layer comprising a matrix material loaded with a plurality of micron-sized and nano-sized particles. In another aspect, the matrix material is loaded with a plurality of heavy and light particles. In another aspect, an ultrasound transducer stack comprises a piezoelectric layer and at least one matching layer. In one aspect, the matching layer comprises a composite material comprising a matrix material loaded with a plurality of micron-sized and nano-sized particles. In a further aspect, the composite material can also comprise a matrix material loaded with a plurality of heavy and light particles. In a further aspect, a matching layer can also comprise cyanoacrylate.